Suppr超能文献

用于肢体外骨骼康复系统的表面肌电信号处理的实时评估

Real-Time Evaluation of the Signal Processing of sEMG Used in Limb Exoskeleton Rehabilitation System.

作者信息

Gao Baofeng, Wei Chao, Ma Hongdao, Yang Shu, Ma Xu, Zhang Songyuan

机构信息

Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing 100081, China.

Tianjin Key Laboratory for Control Theory & Applications in Complicated System, The School of Electrical and Electronics Engineering, Tianjin University of Technology, Tianjin, China.

出版信息

Appl Bionics Biomech. 2018 Oct 14;2018:1391032. doi: 10.1155/2018/1391032. eCollection 2018.

Abstract

As an important branch of medical robotics, a rehabilitation training robot for the hemiplegic upper limbs is a research hotspot of rehabilitation training. Based on the motion relearning program, rehabilitation technology, human anatomy, mechanics, computer science, robotics, and other fields of technology are covered. Based on an sEMG real-time training system for rehabilitation, the exoskeleton robot still has some problems that need to be solved in this field. Most of the existing rehabilitation exoskeleton robotic systems are heavy, and it is difficult to ensure the accuracy and real-time performance of sEMG signals. In this paper, we design a real-time training system for the upper limb exoskeleton robot based on the EMG signal. It has four main characteristics: light weight, portability, high precision, and low delay. This work includes the structure of the rehabilitation robotic system and the method of signal processing of the sEMG. An experiment on the accuracy and time delay of the sEMG signal processing has been done. In the experimental results, the recognition accuracy of the sEMG is 94%, and the average delay time is 300 ms, which meets the accuracy and real-time requirements.

摘要

作为医疗机器人的一个重要分支,偏瘫上肢康复训练机器人是康复训练领域的研究热点。基于运动再学习方案,涵盖了康复技术、人体解剖学、力学、计算机科学、机器人技术等多个领域的技术。基于用于康复的表面肌电实时训练系统,外骨骼机器人在该领域仍存在一些需要解决的问题。现有的大多数康复外骨骼机器人系统都很重,并且难以确保表面肌电信号的准确性和实时性。在本文中,我们设计了一种基于肌电信号的上肢外骨骼机器人实时训练系统。它具有四个主要特点:重量轻、便携、高精度和低延迟。这项工作包括康复机器人系统的结构和表面肌电信号处理方法。已经对表面肌电信号处理的准确性和时间延迟进行了实验。在实验结果中,表面肌电的识别准确率为94%,平均延迟时间为300毫秒,满足了准确性和实时性要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2d/6204194/acc101ed551f/ABB2018-1391032.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验