Suppr超能文献

基于肌电信号对应不同手臂姿势的手指运动解码

Finger Motion Decoding Using EMG Signals Corresponding Various Arm Postures.

机构信息

Department of Electronic Engineering, College of IT, Soongsil University, Seoul 156-743, Korea.

出版信息

Exp Neurobiol. 2010 Jun;19(1):54-61. doi: 10.5607/en.2010.19.1.54. Epub 2010 Jun 30.

Abstract

We provide a novel method to infer finger flexing motions using a four-channel surface electromyogram (EMG). Surface EMG signals can be recorded from the human body non-invasively and easily. Surface EMG signals in this study were obtained from four channel electrodes placed around the forearm. The motions consist of the flexion of five single fingers (thumb, index finger, middle finger, ring finger, and little finger) and three multi.finger motions. The maximum likelihood estimation was used to infer the finger motions. Experimental results have shown that this method can successfully infer the finger flexing motions. The average accuracy was as high as 97.75%. In addition, we examined the influence of inference accuracies with the various arm postures.

摘要

我们提供了一种新颖的方法,使用四个通道的表面肌电图(EMG)来推断手指弯曲运动。表面 EMG 信号可以非侵入性且轻松地从人体上记录下来。本研究中的表面 EMG 信号是从放置在前臂周围的四个通道电极获得的。这些运动包括五个单个手指(拇指、食指、中指、无名指和小指)和三个多指运动的弯曲。最大似然估计用于推断手指运动。实验结果表明,该方法可以成功推断手指弯曲运动。平均准确率高达 97.75%。此外,我们还检查了不同手臂姿势对推断精度的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验