Suppr超能文献

利用激发态Car-Parrinello分子动力学探究辐射诱导的DNA损伤机制。

Probing irradiation induced DNA damage mechanisms using excited state Car-Parrinello molecular dynamics.

作者信息

Markwick Phineus R L, Doltsinis Nikos L, Schlitter Jürgen

机构信息

Institut de Biologie Structurale J.-P. Ebel, 41 Rue Jules Horowitz, 38027 Grenoble Cedex, France.

出版信息

J Chem Phys. 2007 Jan 28;126(4):045104. doi: 10.1063/1.2431177.

Abstract

Photoinduced proton transfer in the Watson-Crick guanine (G)-cytosine (C) base pair has been studied using Car-Parrinello molecular dynamics (CP-MD). A flexible mechanical constraint acting on all three hydrogen bonds in an unbiased fashion has been devised to explore the free energy profile along the proton transfer coordinate. The lowest barrier has been found for proton transfer from G to C along the central hydrogen bond. The resulting charge transfer excited state lies energetically close to the electronic ground state suggesting the possibility of efficient radiationless decay. It is found that dynamic, finite temperature fluctuations significantly reduce the energy gap between the ground and excited states for this charge transfer product, promoting the internal conversion process. A detailed analysis of the internal degrees of freedom reveals that the energy gap is considerably reduced by out-of-plane molecular vibrations, in particular. Consequently, it appears that considering only the minimum energy path provides an upper-bound estimate of the associated energy gap compared to the full-dimension dynamical reaction coordinate. Furthermore, the first CP-MD simulations of the G-C base pair in liquid water are presented, and the effects of solvation on its electronic structure are analyzed.

摘要

利用卡-帕里尼罗分子动力学(CP-MD)研究了沃森-克里克鸟嘌呤(G)-胞嘧啶(C)碱基对中的光致质子转移。设计了一种灵活的机械约束,以无偏的方式作用于所有三个氢键,从而沿着质子转移坐标探索自由能分布。已发现质子沿中心氢键从G转移到C的势垒最低。由此产生的电荷转移激发态在能量上与电子基态接近,这表明存在高效无辐射衰变的可能性。研究发现,动态的有限温度涨落显著降低了这种电荷转移产物基态和激发态之间的能隙,促进了内转换过程。对内部自由度的详细分析表明,特别是面外分子振动使能隙大幅减小。因此,与全维动力学反应坐标相比,仅考虑最小能量路径似乎会给出相关能隙的上限估计。此外,还给出了G-C碱基对在液态水中的首次CP-MD模拟,并分析了溶剂化对其电子结构的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验