Suppr超能文献

预测对摄入放射性物质的生物学反应的挑战与进展

Challenges and progress in predicting biological responses to incorporated radioactivity.

作者信息

Howell R W, Neti P V S V, Pinto M, Gerashchenko B I, Narra V R, Azzam E I

机构信息

Department of Radiology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA.

出版信息

Radiat Prot Dosimetry. 2006;122(1-4):521-7. doi: 10.1093/rpd/ncl448. Epub 2007 Feb 6.

Abstract

Prediction of risks and therapeutic outcome in nuclear medicine largely rely on calculation of the absorbed dose. Absorbed dose specification is complex due to the wide variety of radiations emitted, non-uniform activity distribution, biokinetics, etc. Conventional organ absorbed dose estimates assumed that radioactivity is distributed uniformly throughout the organ. However, there have been dramatic improvements in dosimetry models that reflect the substructure of organs as well as tissue elements within them. These models rely on improved nuclear medicine imaging capabilities that facilitate determination of activity within voxels that represent tissue elements of approximately 0.2-1 cm(3). However, even these improved approaches assume that all cells within the tissue element receive the same dose. The tissue element may be comprised of a variety of cells having different radiosensitivities and different incorporated radioactivity. Furthermore, the extent to which non-uniform distributions of radioactivity within a small tissue element impact the absorbed dose distribution is strongly dependent on the number, type, and energy of the radiations emitted by the radionuclide. It is also necessary to know whether the dose to a given cell arises from radioactive decays within itself (self-dose) or decays in surrounding cells (cross-dose). Cellular response to self-dose can be considerably different than its response to cross-dose from the same radiopharmaceutical. Bystander effects can also play a role in the response. Evidence shows that even under conditions of 'uniform' distribution of radioactivity, a combination of organ dosimetry, voxel dosimetry and dosimetry at the cellular and multicellular levels can be required to predict response.

摘要

核医学中风险和治疗结果的预测很大程度上依赖于吸收剂量的计算。由于发射的辐射种类繁多、活度分布不均匀、生物动力学等因素,吸收剂量的确定很复杂。传统的器官吸收剂量估计假设放射性在整个器官中均匀分布。然而,反映器官亚结构及其内部组织成分的剂量学模型有了显著改进。这些模型依赖于改进的核医学成像能力,有助于确定代表约0.2 - 1立方厘米组织成分的体素内的活度。然而,即使是这些改进的方法也假设组织成分内的所有细胞接受相同的剂量。组织成分可能由具有不同放射敏感性和不同放射性掺入量的多种细胞组成。此外,小组织成分内放射性不均匀分布对吸收剂量分布的影响程度强烈依赖于放射性核素发射的辐射的数量、类型和能量。还需要知道给定细胞的剂量是来自其自身的放射性衰变(自剂量)还是周围细胞的衰变(交叉剂量)。细胞对自剂量的反应可能与其对同一放射性药物交叉剂量的反应有很大不同。旁观者效应也可能在反应中起作用。有证据表明,即使在放射性“均匀”分布的情况下,可能需要结合器官剂量学、体素剂量学以及细胞和多细胞水平的剂量学来预测反应。

相似文献

1
Challenges and progress in predicting biological responses to incorporated radioactivity.
Radiat Prot Dosimetry. 2006;122(1-4):521-7. doi: 10.1093/rpd/ncl448. Epub 2007 Feb 6.
4
Monte Carlo simulation of irradiation and killing in three-dimensional cell populations with lognormal cellular uptake of radioactivity.
Int J Radiat Biol. 2012 Jan;88(1-2):115-22. doi: 10.3109/09553002.2011.602379. Epub 2011 Nov 30.
6
The amazing world of auger electrons.
Int J Radiat Biol. 2004 Nov-Dec;80(11-12):789-803. doi: 10.1080/09553000400017663.
8
Developments and trends in bioequivalent dosimetry.
Radiat Prot Dosimetry. 2015 Apr;164(1-2):65-9. doi: 10.1093/rpd/ncu265. Epub 2014 Sep 1.

引用本文的文献

1
A Review on Tumor Control Probability (TCP) and Preclinical Dosimetry in Targeted Radionuclide Therapy (TRT).
Pharmaceutics. 2022 Sep 22;14(10):2007. doi: 10.3390/pharmaceutics14102007.
3
Induction of lethal bystander effects in human breast cancer cell cultures by DNA-incorporated Iodine-125 depends on phenotype.
Int J Radiat Biol. 2012 Dec;88(12):1028-38. doi: 10.3109/09553002.2012.683511. Epub 2012 May 16.
4
Monte Carlo simulation of irradiation and killing in three-dimensional cell populations with lognormal cellular uptake of radioactivity.
Int J Radiat Biol. 2012 Jan;88(1-2):115-22. doi: 10.3109/09553002.2011.602379. Epub 2011 Nov 30.

本文引用的文献

6
Proliferative response of bystander cells adjacent to cells with incorporated radioactivity.
Cytometry A. 2004 Aug;60(2):155-64. doi: 10.1002/cyto.a.20029.
8
Stress signaling from irradiated to non-irradiated cells.
Curr Cancer Drug Targets. 2004 Feb;4(1):53-64. doi: 10.2174/1568009043481641.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验