Hajek M
Radiation Safety Technical Services Unit, Division of Radiation, Transport and Waste Safety, International Atomic Energy Agency, Vienna 1400, Austria
Radiat Prot Dosimetry. 2015 Apr;164(1-2):65-9. doi: 10.1093/rpd/ncu265. Epub 2014 Sep 1.
Significant progress in radiobiology has refined the understanding of radiation-induced biological response at the cellular level and challenged the conventional application of a macroscopic description of radiation action to dosimetry in favour of a microscopic approach. Pioneering experiments, which investigated the stochastics of energy deposition from ionising radiations in volumes of cellular dimensions, contributed to the recognition of microdosimetry as a new scientific discipline. The first quantitative applications of Monte Carlo track structure simulations in radiobiology, however, supported evidence for target sizes of particular biological importance being in the nanometre regime. Bioequivalent dosimetry attempts to link particular features of the response of physical detectors with biological endpoints, exploiting clusters of multiple ionisations within nanometre scales in solid-state, gas- and water-filled devices. This approach supports the continued development of new concepts and quantities in radiation protection to permit evaluation of the biological effectiveness of radiations of different quality independently of dose and dose rate.
放射生物学的重大进展深化了对细胞水平辐射诱导生物反应的理解,并对将辐射作用的宏观描述常规应用于剂量测定提出了挑战,转而支持微观方法。一些开创性实验研究了细胞尺寸体积内电离辐射能量沉积的随机性,推动了微剂量学作为一门新科学学科的认可。然而,蒙特卡罗径迹结构模拟在放射生物学中的首次定量应用,为具有特定生物学重要性的靶标尺寸处于纳米量级提供了证据支持。生物等效剂量测定试图将物理探测器响应的特定特征与生物学终点联系起来,利用固态、充气和充水装置中纳米尺度内的多次电离簇。这种方法支持辐射防护中新概念和新量的持续发展,以便能够独立于剂量和剂量率评估不同品质辐射的生物学有效性。