Broom M, Nouvellet P, Bacon J P, Waxman D
School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QG, Sussex, UK.
Biosystems. 2007 Sep-Oct;90(2):509-15. doi: 10.1016/j.biosystems.2006.12.002. Epub 2006 Dec 12.
The Kolmogorov-Smirnov test determines the consistency of empirical data with a particular probability distribution. Often, parameters in the distribution are unknown, and have to be estimated from the data. In this case, the Kolmogorov-Smirnov test depends on the form of the particular probability distribution under consideration, even when the estimated parameter-values are used within the distribution. In the present work, we address a less specific problem: to determine the consistency of data with a given functional form of a probability distribution (for example the normal distribution), without enquiring into values of unknown parameters in the distribution. For a wide class of distributions, we present a direct method for determining whether empirical data are consistent with a given functional form of the probability distribution. This utilizes a transformation of the data. If the data are from the class of distributions considered here, the transformation leads to an empirical distribution with no unknown parameters, and hence is susceptible to a standard Kolmogorov-Smirnov test. We give some general analytical results for some of the distributions from the class of distributions considered here. The significance level and power of the tests introduced in this work are estimated from simulations. Some biological applications of the method are given.
柯尔莫哥洛夫-斯米尔诺夫检验用于确定经验数据与特定概率分布的一致性。通常,分布中的参数是未知的,必须从数据中进行估计。在这种情况下,即使在分布中使用估计的参数值,柯尔莫哥洛夫-斯米尔诺夫检验也取决于所考虑的特定概率分布的形式。在本研究中,我们处理一个不太具体的问题:确定数据与概率分布的给定函数形式(例如正态分布)的一致性,而不探究分布中未知参数的值。对于一大类分布,我们提出了一种直接方法来确定经验数据是否与概率分布的给定函数形式一致。这利用了数据的变换。如果数据来自此处考虑的分布类,则该变换会导致一个没有未知参数的经验分布,因此易于进行标准的柯尔莫哥洛夫-斯米尔诺夫检验。我们给出了一些关于此处考虑的分布类中某些分布的一般分析结果。本研究中引入的检验的显著性水平和功效通过模拟进行估计。还给出了该方法的一些生物学应用。