Suppr超能文献

对两参数潜在特质模型的估计潜在分布进行自抽样法。

Bootstrapping the estimated latent distribution of the two-parameter latent trait model.

作者信息

Knott M, Tzamourani P

机构信息

Department of Statistics, London School of Economics and Political Science, UK.

出版信息

Br J Math Stat Psychol. 2007 May;60(Pt 1):175-91. doi: 10.1348/000711006X107539.

Abstract

This paper focuses on the two-parameter latent trait model for binary data. Although the prior distribution of the latent variable is usually assumed to be a standard normal distribution, that prior distribution can be estimated from the data as a discrete distribution using a combination of EM algorithms and other optimization methods. We assess with what precision we can estimate the prior from the data, using simulations and bootstrapping. A novel calibration method is given to check that near optimality is achieved for the bootstrap estimates. We find that there is sufficient information on the prior distribution to be informative, and that the bootstrap method is reliable. We illustrate the bootstrap method for two sets of real data.

摘要

本文聚焦于二元数据的双参数潜在特质模型。尽管潜在变量的先验分布通常假定为标准正态分布,但该先验分布可通过期望最大化(EM)算法与其他优化方法的组合,从数据中估计为离散分布。我们使用模拟和自举法评估从数据中估计先验的精度。给出了一种新颖的校准方法,以检验自举估计是否接近最优。我们发现先验分布中有足够的信息可供参考,且自举法是可靠的。我们用两组真实数据展示了自举法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验