Suppr超能文献

在大鼠心脏小梁的肌节长度等长收缩过程中,肌丝间间距得以保持。

Interfilament spacing is preserved during sarcomere length isometric contractions in rat cardiac trabeculae.

作者信息

Farman Gerrie P, Allen Edward J, Gore David, Irving Thomas C, de Tombe Pieter P

机构信息

Center for Cardiovascular Research, Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, Illinois 60612-7342, USA.

出版信息

Biophys J. 2007 May 1;92(9):L73-5. doi: 10.1529/biophysj.107.104257. Epub 2007 Feb 9.

Abstract

It is generally assumed that the myofilament lattice in intact (i.e., nonskinned) striated muscle obeys constant volume. However, whether such is the case during the myocardial contraction is unknown. Accordingly, we measured interfilament spacing by x-ray diffraction in ultra-thin isolated rat right ventricular trabeculae during a short 10 ms shuttered exposure either just before electrical stimulation (diastole), or at the peak of the contraction (systole); sarcomere length (SL) was held constant throughout the contraction using an iterative feedback control system. SL was thus varied in a series of SL-clamped contractions; the relationship between SL and interfilament spacing was not different between diastole and systole within 1%; this was true also over a wide range of inotropic states induced by varied Ca(2+). We conclude that the cardiac myofilament lattice maintains constant volume, and thus constant interfilament spacing, during contraction.

摘要

一般认为,完整(即未去皮)的横纹肌中的肌丝晶格遵循恒定体积。然而,心肌收缩期间是否如此尚不清楚。因此,我们在短暂的10毫秒快门曝光期间,通过X射线衍射测量了超薄分离大鼠右心室小梁中的丝间间距,该曝光在电刺激前(舒张期)或收缩峰值(收缩期)进行;使用迭代反馈控制系统在整个收缩过程中保持肌节长度(SL)恒定。因此,在一系列SL钳制收缩中改变SL;舒张期和收缩期之间SL与丝间间距的关系在1%以内没有差异;在由不同的Ca(2+)诱导的广泛变力状态下也是如此。我们得出结论,心肌肌丝晶格在收缩期间保持恒定体积,从而保持恒定的丝间间距。

相似文献

1
Interfilament spacing is preserved during sarcomere length isometric contractions in rat cardiac trabeculae.
Biophys J. 2007 May 1;92(9):L73-5. doi: 10.1529/biophysj.107.104257. Epub 2007 Feb 9.
2
Titin-based modulation of active tension and interfilament lattice spacing in skinned rat cardiac muscle.
Pflugers Arch. 2005 Feb;449(5):449-57. doi: 10.1007/s00424-004-1354-6. Epub 2004 Nov 20.
3
Titin determines the Frank-Starling relation in early diastole.
J Gen Physiol. 2003 Feb;121(2):97-110. doi: 10.1085/jgp.20028652.
4
Troponin I in the murine myocardium: influence on length-dependent activation and interfilament spacing.
J Physiol. 2003 Mar 15;547(Pt 3):951-61. doi: 10.1113/jphysiol.2002.038117. Epub 2003 Jan 24.
5
6
Ca(2+)-dependence of passive properties of cardiac sarcomeres.
Adv Exp Med Biol. 2000;481:353-66; discussion 367-70.
9
Effects of sustained length-dependent activation on in situ cross-bridge dynamics in rat hearts.
Biophys J. 2007 Dec 15;93(12):4319-29. doi: 10.1529/biophysj.107.111740. Epub 2007 Aug 31.
10
Sarcomere mechanics in uniform and non-uniform cardiac muscle: a link between pump function and arrhythmias.
Prog Biophys Mol Biol. 2008 Jun-Jul;97(2-3):312-31. doi: 10.1016/j.pbiomolbio.2008.02.013. Epub 2008 Feb 15.

引用本文的文献

1
Load-dependence of the activation of myosin filaments in heart muscle.
J Physiol. 2024 Dec;602(24):6889-6907. doi: 10.1113/JP287434. Epub 2024 Nov 17.
3
Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins.
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2306-11. doi: 10.1073/pnas.1516732113. Epub 2016 Feb 8.
6
Myosin head orientation: a structural determinant for the Frank-Starling relationship.
Am J Physiol Heart Circ Physiol. 2011 Jun;300(6):H2155-60. doi: 10.1152/ajpheart.01221.2010. Epub 2011 Apr 1.
7
Cytoskeletal protein kinases: titin and its relations in mechanosensing.
Pflugers Arch. 2011 Jul;462(1):119-34. doi: 10.1007/s00424-011-0946-1. Epub 2011 Mar 18.
8
Myofilament length dependent activation.
J Mol Cell Cardiol. 2010 May;48(5):851-8. doi: 10.1016/j.yjmcc.2009.12.017. Epub 2010 Jan 4.
10
The rho-guanine nucleotide exchange factor domain of obscurin activates rhoA signaling in skeletal muscle.
Mol Biol Cell. 2009 Sep;20(17):3905-17. doi: 10.1091/mbc.e08-10-1029. Epub 2009 Jul 15.

本文引用的文献

1
Impact of osmotic compression on sarcomere structure and myofilament calcium sensitivity of isolated rat myocardium.
Am J Physiol Heart Circ Physiol. 2006 Oct;291(4):H1847-55. doi: 10.1152/ajpheart.01237.2005. Epub 2006 Jun 2.
2
Length-dependent Ca(2+) activation in cardiac muscle: some remaining questions.
J Muscle Res Cell Motil. 2005;26(4-5):199-212. doi: 10.1007/s10974-005-9011-z. Epub 2005 Oct 5.
3
Sarcomere-length dependence of lattice volume and radial mass transfer of myosin cross-bridges in rat papillary muscle.
Pflugers Arch. 2004 May;448(2):153-60. doi: 10.1007/s00424-004-1243-z. Epub 2004 Feb 6.
4
Frank-Starling law of the heart and the cellular mechanisms of length-dependent activation.
Pflugers Arch. 2002 Dec;445(3):305-10. doi: 10.1007/s00424-002-0902-1. Epub 2002 Nov 1.
5
The filament lattice of striated muscle.
Physiol Rev. 1998 Apr;78(2):359-91. doi: 10.1152/physrev.1998.78.2.359.
6
Uncontrolled sarcomere shortening increases intracellular Ca2+ transient in rat cardiac trabeculae.
Am J Physiol. 1997 Apr;272(4 Pt 2):H1892-7. doi: 10.1152/ajpheart.1997.272.4.H1892.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验