Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA.
Biophys J. 2011 Oct 5;101(7):1661-9. doi: 10.1016/j.bpj.2011.08.047.
We investigated the influence of cardiac myosin binding protein-C (cMyBP-C) and its constitutively unphosphorylated status on the radial and longitudinal stiffnesses of the myofilament lattice in chemically skinned myocardial strips of the following mouse models: nontransgenic (NTG), effective null for cMyBP-C (t/t), wild-type cMyBP-C expressed into t/t (WT(t/t)), and constitutively unphosphorylated cMyBP-C (AllP-(t/t)). We found that the absence of cMyBP-C in the t/t and the unphosphorylated cMyBP-C in the AllP-(t/t) resulted in a compressible cardiac myofilament lattice induced by rigor not observed in the NTG and WT(t/t). These results suggest that the presence and phosphorylation of the N-terminus of cMyBP-C provides structural support and radial rigidity to the myofilament lattice. Examination of myofilament longitudinal stiffness under rigor conditions demonstrated a significant reduction in cross-bridge-dependent stiffness in the t/t compared with NTG controls, but not in the AllP-(t/t) compared with WT(t/t) controls. The absence of cMyBP-C in the t/t and the unphosphorylated cMyBP-C in the AllP-(t/t) both resulted in a shorter myosin cross-bridge lifetime when myosin isoform was controlled. These data collectively suggest that cMyBP-C provides radial rigidity to the myofilament lattice through the N-terminus, and that disruption of the phosphorylation of cMyBP-C is sufficient to abolish this structural role of the N-terminus and shorten cross-bridge lifetime. Although the presence of cMyBP-C also provides longitudinal rigidity, phosphorylation of the N-terminus is not necessary to maintain longitudinal rigidity of the lattice, in contrast to radial rigidity.
我们研究了心肌肌球蛋白结合蛋白 C(cMyBP-C)及其组成型非磷酸化状态对化学剥皮心肌条带中肌丝晶格的径向和纵向刚度的影响。以下是使用以下小鼠模型进行的研究:非转基因(NTG)、cMyBP-C 有效缺失(t/t)、野生型 cMyBP-C 表达至 t/t(WT(t/t))和组成型非磷酸化 cMyBP-C(AllP-(t/t))。我们发现,t/t 中缺乏 cMyBP-C 和 AllP-(t/t) 中缺乏 cMyBP-C 导致了紧张状态下刚性心肌丝晶格的可压缩性,而在 NTG 和 WT(t/t) 中则没有观察到这种情况。这些结果表明,cMyBP-C 的 N 端的存在和磷酸化为肌丝晶格提供了结构支撑和径向刚性。在紧张状态下检查肌丝的纵向刚度表明,与 NTG 对照相比,t/t 中的交联桥依赖性刚度显著降低,但与 WT(t/t) 对照相比,AllP-(t/t) 中则没有降低。t/t 中缺乏 cMyBP-C 和 AllP-(t/t) 中缺乏 cMyBP-C 都会导致肌球蛋白同型控制时肌球蛋白交联桥的寿命缩短。这些数据共同表明,cMyBP-C 通过 N 端为肌丝晶格提供径向刚性,而 cMyBP-C 的磷酸化的破坏足以消除 N 端的这种结构作用并缩短交联桥的寿命。尽管 cMyBP-C 的存在也提供了纵向刚性,但 N 端的磷酸化对于维持晶格的纵向刚性并不是必需的,这与径向刚性形成对比。