Cao Liqin, Shitara Hiroshi, Horii Takuro, Nagao Yasumitsu, Imai Hiroshi, Abe Kuniya, Hara Takahiko, Hayashi Jun-Ichi, Yonekawa Hiromichi
Department of Laboratory Animal Science, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan.
Nat Genet. 2007 Mar;39(3):386-90. doi: 10.1038/ng1970. Epub 2007 Feb 11.
Observations of rapid shifts in mitochondrial DNA (mtDNA) variants between generations prompted the creation of the bottleneck theory. A prevalent hypothesis is that a massive reduction in mtDNA content during early oogenesis leads to the bottleneck. To test this, we estimated the mtDNA copy number in single germline cells and in single somatic cells of early embryos in mice. Primordial germ cells (PGCs) show consistent, moderate mtDNA copy numbers across developmental stages, whereas primary oocytes demonstrate substantial mtDNA expansion during early oocyte maturation. Some somatic cells possess a very low mtDNA copy number. We also demonstrated that PGCs have more than 100 mitochondria per cell. We conclude that the mitochondrial bottleneck is not due to a drastic decline in mtDNA copy number in early oogenesis but rather to a small effective number of segregation units for mtDNA in mouse germ cells. These results provide new information for mtDNA segregation models and for understanding the recurrence risks for mtDNA diseases.
对线粒体DNA(mtDNA)变体在代际间快速变化的观察促使瓶颈理论的产生。一个普遍的假说是,早期卵子发生过程中mtDNA含量的大幅减少导致了瓶颈效应。为了验证这一点,我们估计了小鼠早期胚胎单个生殖细胞和单个体细胞中的mtDNA拷贝数。原始生殖细胞(PGC)在整个发育阶段显示出一致、适度的mtDNA拷贝数,而初级卵母细胞在早期卵母细胞成熟过程中表现出大量的mtDNA扩增。一些体细胞的mtDNA拷贝数非常低。我们还证明,每个原始生殖细胞拥有超过100个线粒体。我们得出结论,线粒体瓶颈不是由于早期卵子发生过程中mtDNA拷贝数的急剧下降,而是由于小鼠生殖细胞中mtDNA的有效分离单位数量较少。这些结果为mtDNA分离模型以及理解mtDNA疾病的复发风险提供了新的信息。