Laboratory of Mouse Models for Human Heritable Diseases, The Tokyo Metropolitan Institute of Medical Science (Rinshoken), Tokyo, Japan.
PLoS Genet. 2009 Dec;5(12):e1000756. doi: 10.1371/journal.pgen.1000756. Epub 2009 Dec 4.
In mammals, observations of rapid shifts in mitochondrial DNA (mtDNA) variants between generations have led to the creation of the bottleneck theory for the transmission of mtDNA. The bottleneck could be attributed to a marked decline of mtDNA content in germ cells giving rise to the next generation, to a small effective number of mtDNA segregation units resulting from homoplasmic nucleoids rather than the single mtDNA molecule serving as the units of segregation, or to the selective transmission of a subgroup of the mtDNA population to the progeny. We have previously determined mtDNA copy number in single germ cells and shown that the bottleneck occurs without the reduction in germline mtDNA content. Recently one study suggested that the bottleneck is driven by a remarkable decline of mtDNA copies in early primordial germ cells (PGCs), while another study reported that the mtDNA genetic bottleneck results from replication of a subpopulation of the mtDNA genome during postnatal oocyte maturation and not during embryonic oogenesis, despite a detected a reduction in mtDNA content in early PGCs. To clarify these contradictory results, we examined the mtDNA copy number in PGCs isolated from transgenic mice expressing fluorescent proteins specifically in PGCs as in the aforementioned two other studies. We provide clear evidence to confirm that no remarkable reduction in mtDNA content occurs in PGCs and reinforce that the bottleneck is generated without reduction of mtDNA content in germ cells.
在哺乳动物中,观察到线粒体 DNA(mtDNA)变体在代际之间的快速变化,导致了 mtDNA 传递的瓶颈理论的产生。瓶颈可能归因于生殖细胞中线粒体 DNA 含量的显著下降,导致下一代的产生,也可能归因于同源核仁而不是单个 mtDNA 分子作为分离单位导致的 mtDNA 分离单位的有效数量减少,或者是 mtDNA 群体的亚群的选择性传递到后代。我们之前已经确定了单个生殖细胞中的 mtDNA 拷贝数,并表明瓶颈的发生并不伴随着生殖系 mtDNA 含量的减少。最近的一项研究表明,瓶颈是由早期原始生殖细胞(PGC)中 mtDNA 拷贝数的显著下降驱动的,而另一项研究报告称,mtDNA 遗传瓶颈是由于在产后卵母细胞成熟过程中复制了 mtDNA 基因组的亚群而不是在胚胎卵母细胞发生时导致的,尽管在早期 PGC 中检测到 mtDNA 含量减少。为了澄清这些矛盾的结果,我们检查了在上述两项其他研究中特异性在 PGC 中表达荧光蛋白的转基因小鼠中分离的 PGC 中的 mtDNA 拷贝数。我们提供了明确的证据来证实 PGC 中 mtDNA 含量没有显著减少,并证实瓶颈的产生不伴随着生殖细胞中线粒体 DNA 含量的减少。