Suppr超能文献

斑块状生态系统中微生物生命对空间距离和环境异质性的多尺度响应。

Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem.

作者信息

Ramette Alban, Tiedje James M

机构信息

Center for Microbial Ecology, Michigan State University, 540 Plant and Soil Sciences Building, East Lansing, MI 48824-1325, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2761-6. doi: 10.1073/pnas.0610671104. Epub 2007 Feb 12.

Abstract

Spatial distance (SD) and environmental heterogeneity (EH) are currently thought to represent major factors shaping genetic variation and population abundance, but their relative importance is still poorly understood. Because EH varies at multiple spatial scales, so too are microbial variables expected to vary. The determination of SD x EH interactions at multiple scales is, however, not a trivial exercise, especially when one examines their effects on microbial abundance and genomic similarities. Here we assessed those interactions at all scales perceptible in a patchy environment composed of known plant species and of heterogeneous soil physical and chemical parameters. For free-living, soil-borne Burkholderia ambifaria, genomic similarities responded to most of the spatial scales that the experimental sampling scheme could reveal, despite limited dispersal of the individuals. Species abundance and community composition were, however, responding to much smaller scales more consistent with local responses to EH. Our results suggest that whole-genome similarities may reflect the simultaneous effects of both SD and EH in microbial populations, but the pure effects of each factor only contributed to < 2% of the total genetic variation. The large amount of unexplained variation that remains after considering most environmental, spatial, and biological interactions is then posited to be the result of noise introduced by unmeasured environmental and spatial variability, sampling effects, and neutral ecological drift.

摘要

空间距离(SD)和环境异质性(EH)目前被认为是塑造遗传变异和种群丰度的主要因素,但其相对重要性仍知之甚少。由于EH在多个空间尺度上变化,微生物变量也预计会发生变化。然而,确定多个尺度上的SD×EH相互作用并非易事,尤其是当研究它们对微生物丰度和基因组相似性的影响时。在这里,我们在一个由已知植物物种以及土壤物理和化学参数各异的斑块状环境中,评估了所有可感知尺度上的这些相互作用。对于自由生活的、土壤传播的洋葱伯克霍尔德菌,尽管个体扩散有限,但基因组相似性对实验采样方案所能揭示的大多数空间尺度都有响应。然而物种丰度和群落组成对小得多的尺度有响应,这与对EH的局部响应更为一致。我们的结果表明,全基因组相似性可能反映了SD和EH对微生物种群的同时影响,但每个因素的纯粹影响仅占总遗传变异的不到2%。在考虑了大多数环境、空间和生物相互作用后仍存在的大量无法解释的变异,被认为是由未测量的环境和空间变异性、采样效应以及中性生态漂变引入的噪声所致。

相似文献

1
Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem.
Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2761-6. doi: 10.1073/pnas.0610671104. Epub 2007 Feb 12.
2
Nest distribution shaping within-stream variation in Atlantic salmon juvenile abundance and competition over small spatial scales.
J Anim Ecol. 2008 Jan;77(1):167-72. doi: 10.1111/j.1365-2656.2007.01326.x. Epub 2007 Nov 13.
3
Environmental drivers of soil microbial community distribution at the Koiliaris Critical Zone Observatory.
FEMS Microbiol Ecol. 2014 Oct;90(1):139-52. doi: 10.1111/1574-6941.12379. Epub 2014 Jul 29.
4
Influences of space, soil, nematodes and plants on microbial community composition of chalk grassland soils.
Environ Microbiol. 2010 Aug;12(8):2096-106. doi: 10.1111/j.1462-2920.2009.02053.x. Epub 2009 Sep 16.
5
Relative role of deterministic and stochastic determinants of soil animal community: a spatially explicit analysis of oribatid mites.
J Anim Ecol. 2012 Jan;81(1):214-21. doi: 10.1111/j.1365-2656.2011.01886.x. Epub 2011 Jul 1.
9
Species abundance and diversity of Burkholderia cepacia complex in the environment.
Appl Environ Microbiol. 2005 Mar;71(3):1193-201. doi: 10.1128/AEM.71.3.1193-1201.2005.
10

引用本文的文献

2
Habitat specificity modulates the bacterial biogeographic patterns in the Southern Ocean.
FEMS Microbiol Ecol. 2024 Oct 25;100(11). doi: 10.1093/femsec/fiae134.
3
Epiphytic bacterial community composition on four submerged macrophytes in different regions of Taihu Lake.
Front Plant Sci. 2024 Jul 25;15:1404718. doi: 10.3389/fpls.2024.1404718. eCollection 2024.
5
Spatial variations impact the soil fungal communities of forests in Northeast China.
Front Plant Sci. 2024 May 24;15:1408272. doi: 10.3389/fpls.2024.1408272. eCollection 2024.
9
Taxonomic and functional β-diversity patterns reveal stochastic assembly rules in microbial communities of seagrass beds.
Front Plant Sci. 2024 Feb 28;15:1367773. doi: 10.3389/fpls.2024.1367773. eCollection 2024.
10

本文引用的文献

1
Studies of Adaptive Radiation Using Model Microbial Systems.
Am Nat. 2000 Oct;156(S4):S35-S44. doi: 10.1086/303414.
2
The importance of physical isolation to microbial diversification.
FEMS Microbiol Ecol. 2004 Jun 1;48(3):293-303. doi: 10.1016/j.femsec.2004.03.013.
3
Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution.
Microb Ecol. 2007 Feb;53(2):197-207. doi: 10.1007/s00248-005-5010-2.
4
Variation partitioning of species data matrices: estimation and comparison of fractions.
Ecology. 2006 Oct;87(10):2614-25. doi: 10.1890/0012-9658(2006)87[2614:vposdm]2.0.co;2.
5
The role of root exudates in rhizosphere interactions with plants and other organisms.
Annu Rev Plant Biol. 2006;57:233-66. doi: 10.1146/annurev.arplant.57.032905.105159.
6
Genetic diversity in natural populations of a soil bacterium across a landscape gradient.
Proc Natl Acad Sci U S A. 1988 Dec;85(24):9621-4. doi: 10.1073/pnas.85.24.9621.
7
Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere.
Ann Bot. 2006 May;97(5):839-55. doi: 10.1093/aob/mcl028. Epub 2006 Mar 21.
9
Microbial biogeography: putting microorganisms on the map.
Nat Rev Microbiol. 2006 Feb;4(2):102-12. doi: 10.1038/nrmicro1341.
10
Island size and bacterial diversity in an archipelago of engineering machines.
Environ Microbiol. 2005 Aug;7(8):1220-6. doi: 10.1111/j.1462-2920.2005.00802.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验