Singh Vipender, Schramm Vern L
Department of Biochemistry, Albert Einstein College of Medicine, Bronx, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
J Am Chem Soc. 2007 Mar 14;129(10):2783-95. doi: 10.1021/ja065082r. Epub 2007 Feb 14.
Kinetic isotope effects (KIEs) and computer modeling are used to approximate the transition state of S. pneumoniae 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN). Experimental KIEs were measured and corrected for a small forward commitment factor. Intrinsic KIEs were obtained for [1'-3H], [1'-14C], [2'-3H], [4'-3H], [5'-3H(2)], [9-15N] and [Me-3H(3)] MTAs. The intrinsic KIEs suggest an SN1 transition state with no covalent participation of the adenine or the water nucleophile. The transition state was modeled as a stable ribooxacarbenium ion intermediate and was constrained to fit the intrinsic KIEs. The isotope effects predicted a 3-endo conformation for the ribosyl oxacarbenium-ion corresponding to H1'-C1'-C2'-H2' dihedral angle of 70 degrees. Ab initio Hartree-Fock and DFT calculations were performed to study the effect of polarization of ribosyl hydroxyls, torsional angles, and the effect of base orientation on isotope effects. Calculations suggest that the 4'-3H KIE arises from hyperconjugation between the lonepair (n(p)) of O4' and the sigma* (C4'-H4') antibonding orbital owing to polarization of the 3'-hydroxyl by Glu174. A [methyl-3H(3)] KIE is due to hyperconjugation between np of sulfur and sigma* of methyl C-H bonds. The van der Waal contacts increase the 1'-3H KIE because of induced dipole-dipole interactions. The 1'-3H KIE is also influenced by the torsion angles of adjacent atoms and by polarization of the 2'-hydroxyl. Changing the virtual solvent (dielectric constant) does not influence the isotope effects. Unlike most N-ribosyltransferases, N7 of the leaving group adenine is not protonated at the transition state of S. pneumoniae MTAN. This feature differentiates the S. pneumoniae and E. coli transition states and explains the 10(3)-fold decrease in the catalytic efficiency of S. pneumoniae MTAN relative to that from E. coli.
动力学同位素效应(KIEs)和计算机建模被用于估算肺炎链球菌5'-甲硫基腺苷/S-腺苷高半胱氨酸核苷酶(MTAN)的过渡态。测量了实验性KIEs,并针对一个较小的正向反应系数进行了校正。获得了[1'-3H]、[1'-14C]、[2'-3H]、[4'-3H]、[5'-3H(2)]、[9-15N]和[Me-3H(3)]甲基硫代腺苷(MTA)的固有KIEs。固有KIEs表明存在一个SN1过渡态,其中腺嘌呤或亲核水分子没有共价参与。过渡态被模拟为一个稳定的核糖氧碳鎓离子中间体,并被限制以符合固有KIEs。同位素效应预测核糖氧碳鎓离子的3-内型构象对应于H1'-C1'-C2'-H2'二面角为70度。进行了从头算Hartree-Fock和密度泛函理论(DFT)计算,以研究核糖羟基的极化、扭转角以及碱基取向对同位素效应的影响。计算表明,4'-3H KIE源于O4'的孤对电子(n(p))与σ*(C4'-H4')反键轨道之间的超共轭,这是由于Glu174对3'-羟基的极化作用。[甲基-3H(3)] KIE是由于硫的n(p)与甲基C-H键的σ*之间的超共轭。范德华接触由于诱导偶极-偶极相互作用增加了1'-3H KIE。1'-3H KIE也受到相邻原子扭转角和2'-羟基极化的影响。改变虚拟溶剂(介电常数)不会影响同位素效应。与大多数N-核糖基转移酶不同,在肺炎链球菌MTAN的过渡态,离去基团腺嘌呤的N7没有质子化。这一特征区分了肺炎链球菌和大肠杆菌的过渡态,并解释了肺炎链球菌MTAN相对于大肠杆菌MTAN催化效率降低10³倍的原因。