Wang Shanzhi, Cameron Scott A, Clinch Keith, Evans Gary B, Wu Zhimeng, Schramm Vern L, Tyler Peter C
Department of Biochemistry, Albert Einstein College of Medicine , New York, New York, 10461, United States.
The Ferrier Research Institute, Victoria University of Wellington , Lower Hutt, Wellington 5040, New Zealand.
J Am Chem Soc. 2015 Nov 18;137(45):14275-80. doi: 10.1021/jacs.5b06110. Epub 2015 Nov 9.
Helicobacter pylori is a Gram-negative bacterium that colonizes the gut of over 50% of the world's population. It is responsible for most peptic ulcers and is an important risk factor for gastric cancer. Antibiotic treatment for H. pylori infections is challenging as drug resistance has developed to antibiotics with traditional mechanisms of action. H. pylori uses an unusual pathway for menaquinone biosynthesis with 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzing an essential step. We validated MTAN as a target with a transition-state analogue of the enzyme [Wang, S.; Haapalainen, A. M.; Yan, F.; et al. Biochemistry 2012, 51, 6892-6894]. MTAN inhibitors will only be useful drug candidates if they can both include tight binding to the MTAN target and have the ability to penetrate the complex cell membrane found in Gram-negative H. pylori. Here we explore structural scaffolds for MTAN inhibition and for growth inhibition of cultured H. pylori. Sixteen analogues reported here are transition-state analogues of H. pylori MTAN with dissociation constants of 50 pM or below. Ten of these prevent growth of the H. pylori with IC90 values below 0.01 μg/mL. These remarkable compounds meet the criteria for potent inhibition and cell penetration. As a consequence, 10 new H. pylori antibiotic candidates are identified, all of which prevent H. pylori growth at concentrations 16-2000-fold lower than the five antibiotics, amoxicillin, metronidazole, levofloxacin, tetracyclin, and clarithromycin, commonly used to treat H. pylori infections. X-ray crystal structures of MTAN cocrystallized with several inhibitors show them to bind in the active site making interactions consistent with transition-state analogues.
幽门螺杆菌是一种革兰氏阴性菌,全球超过50%的人口肠道中都有它的定植。它是大多数消化性溃疡的病因,也是胃癌的一个重要风险因素。由于对具有传统作用机制的抗生素产生了耐药性,幽门螺杆菌感染的抗生素治疗具有挑战性。幽门螺杆菌利用一条不寻常的途径进行甲萘醌生物合成,其中5'-甲基硫代腺苷/S-腺苷同型半胱氨酸核苷酶(MTAN)催化一个关键步骤。我们用该酶的过渡态类似物验证了MTAN作为一个靶点[王,S.;哈帕莱宁,A.M.;严,F.;等。《生物化学》2012年,51卷,6892 - 6894页]。只有当MTAN抑制剂既能紧密结合MTAN靶点,又有能力穿透革兰氏阴性幽门螺杆菌中复杂的细胞膜时,它们才会成为有用的候选药物。在此,我们探索用于MTAN抑制和培养的幽门螺杆菌生长抑制的结构支架。本文报道的16种类似物是幽门螺杆菌MTAN的过渡态类似物,解离常数为50 pM或更低。其中10种可阻止幽门螺杆菌生长,IC90值低于0.01 μg/mL。这些显著的化合物符合强效抑制和细胞穿透的标准。结果,鉴定出10种新的幽门螺杆菌抗生素候选物,所有这些候选物在比常用于治疗幽门螺杆菌感染的五种抗生素(阿莫西林、甲硝唑、左氧氟沙星、四环素和克拉霉素)低16 - 2000倍的浓度下就能阻止幽门螺杆菌生长。MTAN与几种抑制剂共结晶的X射线晶体结构表明它们结合在活性位点,其相互作用与过渡态类似物一致。