Wang Wenzhong, Winther Jakob R, Thorpe Colin
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
Biochemistry. 2007 Mar 20;46(11):3246-54. doi: 10.1021/bi602499t. Epub 2007 Feb 14.
The FAD prosthetic group of the ERV/ALR family of sulfhydryl oxidases is housed at the mouth of a 4-helix bundle and communicates with a pair of juxtaposed cysteine residues that form the proximal redox active disulfide. Most of these enzymes have one or more additional distal disulfide redox centers that facilitate the transfer of reducing equivalents from the dithiol substrates of these oxidases to the isoalloxazine ring where the reaction with molecular oxygen occurs. The present study examines yeast Erv2p and compares the redox behavior of this ER luminal protein with the augmenter of liver regeneration, a sulfhydryl oxidase of the mitochondrial intermembrane space, and a larger protein containing the ERV/ALR domain, quiescin-sulfhydryl oxidase (QSOX). Dithionite and photochemical reductions of Erv2p show full reduction of the flavin cofactor after the addition of 4 electrons with a midpoint potential of -200 mV at pH 7.5. A charge-transfer complex between a proximal thiolate and the oxidized flavin is not observed in Erv2p consistent with a distribution of reducing equivalents over the flavin and distal disulfide redox centers. Upon coordination with Zn2+, full reduction of Erv2p requires 6 electrons. Zn2+ also strongly inhibits Erv2p when assayed using tris(2-carboxyethyl)phosphine (TCEP) as the reducing substrate of the oxidase. In contrast to QSOX, Erv2p shows a comparatively low turnover with a range of small thiol substrates, with reduced Escherichia coli thioredoxin and with unfolded proteins. Rapid reaction studies confirm that reduction of the flavin center of Erv2p is rate-limiting during turnover with molecular oxygen. This comparison of the redox properties between members of the ERV/ALR family of sulfhydryl oxidases provides insights into their likely roles in oxidative protein folding.
巯基氧化酶ERV/ALR家族的黄素腺嘌呤二核苷酸(FAD)辅基位于一个四螺旋束的开口处,并与一对并列的半胱氨酸残基相连,这两个残基形成了近端氧化还原活性二硫键。这些酶中的大多数还有一个或多个额外的远端二硫键氧化还原中心,有助于将还原当量从这些氧化酶的二硫醇底物转移到异咯嗪环,在那里与分子氧发生反应。本研究检测了酵母Erv2p,并将这种内质网腔蛋白的氧化还原行为与肝脏再生增强因子(一种线粒体内膜间隙的巯基氧化酶)以及一种含有ERV/ALR结构域的更大的蛋白——静止素-巯基氧化酶(QSOX)进行了比较。连二亚硫酸盐和光化学还原Erv2p的结果表明,在pH 7.5条件下加入4个电子后,黄素辅因子完全还原,中点电位为-200 mV。在Erv2p中未观察到近端硫醇盐与氧化型黄素之间的电荷转移复合物,这与还原当量在黄素和远端二硫键氧化还原中心上的分布情况一致。与Zn2+配位后,Erv2p的完全还原需要6个电子。当使用三(2-羧乙基)膦(TCEP)作为氧化酶的还原底物进行检测时,Zn2+也强烈抑制Erv2p。与QSOX不同,Erv2p对一系列小分子硫醇底物、还原型大肠杆菌硫氧还蛋白和未折叠蛋白的周转率相对较低。快速反应研究证实,在与分子氧的周转过程中,Erv2p黄素中心的还原是限速步骤。对ERV/ALR家族巯基氧化酶成员之间氧化还原特性的这种比较,为它们在氧化蛋白折叠中可能发挥的作用提供了见解。