Suppr超能文献

使用近红外图像的光照不变人脸识别

Illumination invariant face recognition using near-infrared images.

作者信息

Li Stan Z, Chu Rufeng, Liao Shengcai, Zhang Lun

机构信息

Institute of Automation, Chinese Academy of Sciences, Bejing, China.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2007 Apr;29(4):627-39. doi: 10.1109/TPAMI.2007.1014.

Abstract

Most current face recognition systems are designed for indoor, cooperative-user applications. However, even in thus-constrained applications, most existing systems, academic and commercial, are compromised in accuracy by changes in environmental illumination. In this paper, we present a novel solution for illumination invariant face recognition for indoor, cooperative-user applications. First, we present an active near infrared (NIR) imaging system that is able to produce face images of good condition regardless of visible lights in the environment. Second, we show that the resulting face images encode intrinsic information of the face, subject only to a monotonic transform in the gray tone; based on this, we use local binary pattern (LBP) features to compensate for the monotonic transform, thus deriving an illumination invariant face representation. Then, we present methods for face recognition using NIR images; statistical learning algorithms are used to extract most discriminative features from a large pool of invariant LBP features and construct a highly accurate face matching engine. Finally, we present a system that is able to achieve accurate and fast face recognition in practice, in which a method is provided to deal with specular reflections of active NIR lights on eyeglasses, a critical issue in active NIR image-based face recognition. Extensive, comparative results are provided to evaluate the imaging hardware, the face and eye detection algorithms, and the face recognition algorithms and systems, with respect to various factors, including illumination, eyeglasses, time lapse, and ethnic groups.

摘要

当前大多数人脸识别系统是为室内、合作用户应用而设计的。然而,即使在这种受限的应用场景中,大多数现有的学术和商业系统在准确性方面都会因环境光照的变化而受到影响。在本文中,我们提出了一种针对室内合作用户应用的光照不变人脸识别的新颖解决方案。首先,我们提出一种主动近红外(NIR)成像系统,该系统能够生成状态良好的面部图像,而不受环境中可见光的影响。其次,我们表明所得到的面部图像编码了面部的内在信息,仅在灰度色调上进行单调变换;基于此,我们使用局部二值模式(LBP)特征来补偿这种单调变换,从而得到一种光照不变的面部表示。然后,我们提出了使用近红外图像进行人脸识别的方法;统计学习算法用于从大量不变的LBP特征中提取最具判别力的特征,并构建一个高精度的面部匹配引擎。最后,我们提出了一个在实际中能够实现准确快速人脸识别的系统,其中提供了一种方法来处理主动近红外光在眼镜上的镜面反射,这是基于主动近红外图像的人脸识别中的一个关键问题。我们提供了广泛的对比结果,以评估成像硬件、面部和眼睛检测算法以及人脸识别算法和系统在各种因素(包括光照、眼镜、时间间隔和种族)方面的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验