Huang Chang, Ai Haizhou, Li Yuan, Lao Shihong
Department of Computer Science and Technology, Tsinghua University, Bejing, China.
IEEE Trans Pattern Anal Mach Intell. 2007 Apr;29(4):671-86. doi: 10.1109/TPAMI.2007.1011.
Rotation invariant multiview face detection (MVFD) aims to detect faces with arbitrary rotation-in-plane (RIP) and rotation-off-plane (ROP) angles in still images or video sequences. MVFD is crucial as the first step in automatic face processing for general applications since face images are seldom upright and frontal unless they are taken cooperatively. In this paper, we propose a series of innovative methods to construct a high-performance rotation invariant multiview face detector, including the Width-First-Search (WFS) tree detector structure, the Vector Boosting algorithm for learning vector-output strong classifiers, the domain-partition-based weak learning method, the sparse feature in granular space, and the heuristic search for sparse feature selection. As a result of that, our multiview face detector achieves low computational complexity, broad detection scope, and high detection accuracy on both standard testing sets and real-life images.
旋转不变多视图人脸检测(MVFD)旨在检测静止图像或视频序列中具有任意平面内旋转(RIP)和平面外旋转(ROP)角度的人脸。MVFD作为一般应用中自动人脸处理的第一步至关重要,因为除非是合作拍摄,否则人脸图像很少是直立和正面的。在本文中,我们提出了一系列创新方法来构建高性能旋转不变多视图人脸检测器,包括宽度优先搜索(WFS)树检测器结构、用于学习向量输出强分类器的向量增强算法、基于域划分的弱学习方法、粒度空间中的稀疏特征以及用于稀疏特征选择的启发式搜索。因此,我们的多视图人脸检测器在标准测试集和真实图像上均实现了低计算复杂度、广泛的检测范围和高检测准确率。