Suppr超能文献

浮动增强学习与统计面部检测。

FloatBoost learning and statistical face detection.

作者信息

Li Stan Z, Zhang ZhenQiu

机构信息

Microsoft Research Asia, 3/F Beijing Sigma Center, Hai Dian District, Beijing 100080, China.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2004 Sep;26(9):1112-23. doi: 10.1109/TPAMI.2004.68.

Abstract

A novel learning procedure, called FloatBoost, is proposed for learning a boosted classifier for achieving the minimum error rate. FloatBoost learning uses a backtrack mechanism after each iteration of AdaBoost learning to minimize the error rate directly, rather than minimizing an exponential function of the margin as in the traditional AdaBoost algorithms. A second contribution of the paper is a novel statistical model for learning best weak classifiers using a stagewise approximation of the posterior probability. These novel techniques lead to a classifier which requires fewer weak classifiers than AdaBoost yet achieves lower error rates in both training and testing, as demonstrated by extensive experiments. Applied to face detection, the FloatBoost learning method, together with a proposed detector pyramid architecture, leads to the first real-time multiview face detection system reported.

摘要

提出了一种名为FloatBoost的新型学习过程,用于学习一个提升分类器以实现最小错误率。FloatBoost学习在AdaBoost学习的每次迭代之后使用回溯机制直接最小化错误率,而不是像传统AdaBoost算法那样最小化边缘的指数函数。本文的第二个贡献是一种新型统计模型,用于使用后验概率的逐阶段近似来学习最佳弱分类器。如大量实验所示,这些新技术导致一个分类器,它比AdaBoost需要更少的弱分类器,但在训练和测试中都能实现更低的错误率。应用于面部检测时,FloatBoost学习方法与提出的检测器金字塔架构一起,产生了首个被报道的实时多视图面部检测系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验