Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America.
PLoS One. 2007 Feb 14;2(2):e207. doi: 10.1371/journal.pone.0000207.
Parametric kernel methods currently dominate the literature regarding the construction of animal home ranges (HRs) and utilization distributions (UDs). These methods frequently fail to capture the kinds of hard boundaries common to many natural systems. Recently a local convex hull (LoCoH) nonparametric kernel method, which generalizes the minimum convex polygon (MCP) method, was shown to be more appropriate than parametric kernel methods for constructing HRs and UDs, because of its ability to identify hard boundaries (e.g., rivers, cliff edges) and convergence to the true distribution as sample size increases. Here we extend the LoCoH in two ways: "fixed sphere-of-influence," or r-LoCoH (kernels constructed from all points within a fixed radius r of each reference point), and an "adaptive sphere-of-influence," or a-LoCoH (kernels constructed from all points within a radius a such that the distances of all points within the radius to the reference point sum to a value less than or equal to a), and compare them to the original "fixed-number-of-points," or k-LoCoH (all kernels constructed from k-1 nearest neighbors of root points). We also compare these nonparametric LoCoH to parametric kernel methods using manufactured data and data collected from GPS collars on African buffalo in the Kruger National Park, South Africa. Our results demonstrate that LoCoH methods are superior to parametric kernel methods in estimating areas used by animals, excluding unused areas (holes) and, generally, in constructing UDs and HRs arising from the movement of animals influenced by hard boundaries and irregular structures (e.g., rocky outcrops). We also demonstrate that a-LoCoH is generally superior to k- and r-LoCoH (with software for all three methods available at http://locoh.cnr.berkeley.edu).
参数核方法目前在构建动物活动范围 (HR) 和利用分布 (UD) 的文献中占据主导地位。这些方法经常无法捕捉到许多自然系统中常见的硬边界类型。最近,一种局部凸包 (LoCoH) 非参数核方法,它推广了最小凸多边形 (MCP) 方法,由于其能够识别硬边界(例如河流、悬崖边缘)以及随着样本量增加而收敛到真实分布的能力,被证明比参数核方法更适合构建 HR 和 UD。在这里,我们以两种方式扩展了 LoCoH:“固定影响范围”或 r-LoCoH(从每个参考点的固定半径 r 内的所有点构建的核)和“自适应影响范围”或 a-LoCoH(从半径 a 内的所有点构建的核,使得半径内所有点到参考点的距离总和小于或等于 a),并将它们与原始的“固定点数”或 k-LoCoH(从根点的 k-1 个最近邻点构建的所有核)进行比较。我们还使用人造数据和从南非克鲁格国家公园的非洲水牛 GPS 项圈收集的数据,将这些非参数 LoCoH 与参数核方法进行比较。我们的结果表明,LoCoH 方法在估计动物使用的区域、排除未使用的区域(空洞)以及一般在构建动物运动产生的 UD 和 HR 方面优于参数核方法,这些 HR 受到硬边界和不规则结构(例如,岩石露头)的影响。我们还表明,a-LoCoH 通常优于 k-LoCoH 和 r-LoCoH(所有三种方法的软件均可在 http://locoh.cnr.berkeley.edu 上获得)。