Huang Yin, Anastasio Mark A
Department of Biomedical Engineering, Illinois Institute of Technology, IL, USA.
J Opt Soc Am A Opt Image Sci Vis. 2007 Mar;24(3):626-42. doi: 10.1364/josaa.24.000626.
Intensity diffraction tomography (I-DT) reconstruction theory provides a mathematical mapping between two in-line intensity measurements acquired at a given tomographic view angle and Fourier components of the object function. Poles in this mapping will cause certain Fourier components to contain greatly amplified noise levels when applied to noisy measurement data, which can result in noisy and distorted images in practice. We investigate the statistically principled use of multiple in-line intensity measurements in I-DT. Reconstruction methods are developed that exploit the statistical structure of the in-line measurements to minimize the variance of the estimated Fourier components of the object function.
强度衍射层析成像(I-DT)重建理论提供了在给定层析视角下获取的两个同轴强度测量值与目标函数的傅里叶分量之间的数学映射。当将此映射应用于有噪声的测量数据时,其中的极点会导致某些傅里叶分量包含大幅放大的噪声水平,这在实际中可能会导致图像出现噪声和失真。我们研究了在I-DT中对多个同轴强度测量值进行有统计学依据的使用。开发了利用同轴测量值的统计结构来最小化目标函数估计傅里叶分量方差的重建方法。