Courcambeck Jérôme, Bouzidi Mourad, Perbost Régis, Jouirou Besma, Amrani Nolwenn, Cacoub Patrice, Pèpe Gérard, Sabatier Jean-Marc, Halfon Philippe
Geoscience, Marseille, France.
Antivir Ther. 2006;11(7):847-55.
BACKGROUND/AIMS: One of the main issues in the development of antiviral therapy is the emergence of drug-resistant viruses. In the case of hepatitis C virus (HCV), selection of drug-resistant mutants was evidenced by in vitro studies on protease inhibitors (PIs); for example, BILN-2061, VX-950 and SCH-6. Four mutations in the HCV protease (R155Q, A156T, D168A and D168V) have been identified in vitro in the HCV replicon system that confer resistance to BILN-2061 (a reference inhibitor). However, the molecular mechanism of drug resistance is still unknown. The aim of this study is to unravel, using an molecular modelling strategy, the structural basis of such molecular mechanism of HCV resistance to PIs. We focused on protease mutations conferring HCV resistance to BILN-2061 and described for the first time such mechanism at a molecular level.
The structures of drug-resistant NS3 proteases were obtained by mutation of selected residues (R155Q, A156T, D168A and D168V) and the ternary complexes formed between NS3-4A and BILN-2061 were optimized using GenMol software (www.3dgenoscience.com; Genoscience, Marseille, France).
Two mechanisms were evidenced for viral resistance to BILN-2061. A 'direct' resistance mechanism is based on contacts between the mutated R155Q and A156T protease residues and its inhibitor. In the 'indirect' resistance mechanism, the mutated D168A/V residue is not in close contact with the drug itself but interacts with other residues connected to the drug.
These data provide new insights in the understanding of the mechanisms of HCV drug escape, and may allow predicting potential cross-resistance phenomenon with other PIs. This approach can be used as a basis for future rational PI drug design candidates.
背景/目的:抗病毒治疗发展中的主要问题之一是耐药病毒的出现。就丙型肝炎病毒(HCV)而言,体外对蛋白酶抑制剂(PIs)的研究证实了耐药突变体的选择;例如,BILN - 2061、VX - 950和SCH - 6。在HCV复制子系统中已在体外鉴定出HCV蛋白酶的四个突变(R155Q、A156T、D168A和D168V),这些突变赋予对BILN - 2061(一种参考抑制剂)的抗性。然而,耐药的分子机制仍然未知。本研究的目的是使用分子建模策略揭示HCV对PIs耐药这种分子机制的结构基础。我们聚焦于赋予HCV对BILN - 2061耐药的蛋白酶突变,并首次在分子水平描述了这种机制。
通过对选定残基(R155Q、A156T、D168A和D168V)进行突变获得耐药NS3蛋白酶的结构,并使用GenMol软件(www.3dgenoscience.com;法国马赛的Genoscience公司)优化NS3 - 4A与BILN - 2061之间形成的三元复合物。
证实了病毒对BILN - 2061耐药的两种机制。“直接”耐药机制基于突变的R155Q和A156T蛋白酶残基与其抑制剂之间的接触。在“间接”耐药机制中,突变的D168A/V残基不与药物本身紧密接触,而是与连接到药物的其他残基相互作用。
这些数据为理解HCV药物逃逸机制提供了新的见解,并可能有助于预测与其他PIs的潜在交叉耐药现象。这种方法可作为未来合理设计PI药物候选物的基础。