Suppr超能文献

蛋白激酶C、高渗甘油(HOG)和钙离子信号通路共同调节白色念珠菌中的几丁质合成。

The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans.

作者信息

Munro Carol A, Selvaggini Serena, de Bruijn Irene, Walker Louise, Lenardon Megan D, Gerssen Bertus, Milne Sarah, Brown Alistair J P, Gow Neil A R

机构信息

School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.

出版信息

Mol Microbiol. 2007 Mar;63(5):1399-413. doi: 10.1111/j.1365-2958.2007.05588.x.

Abstract

Chitin is an essential component of the fungal cell wall and its synthesis is under tight spatial and temporal regulation. The fungal human pathogen Candida albicans has a four member chitin synthase gene family comprising of CHS1 (class II), CHS2 (class I), CHS3 (class IV) and CHS8 (class I). LacZ reporters were fused to each CHS promoter to examine the transcriptional regulation of chitin synthesis. Each CHS promoter had a unique regulatory profile and responded to the addition of cell wall damaging agents, to mutations in specific CHS genes and exogenous Ca2+. The regulation of both CHS gene expression and chitin synthesis was co-ordinated by the PKC, HOG MAP kinase and Ca2+/calcineurin signalling pathways. Activation of these pathways also resulted in increased chitin synthase activity in vitro and elevated cell wall chitin content. Combinations of treatments that activated multiple pathways resulted in synergistic increases in CHS expression and in cell wall chitin content. Therefore, at least three pathways co-ordinately regulate chitin synthesis and activation of chitin synthesis operates at both transcriptional and post-transcriptional levels.

摘要

几丁质是真菌细胞壁的重要组成部分,其合成受到严格的空间和时间调控。人类真菌病原体白色念珠菌有一个由四个成员组成的几丁质合酶基因家族,包括CHS1(II类)、CHS2(I类)、CHS3(IV类)和CHS8(I类)。将LacZ报告基因与每个CHS启动子融合,以研究几丁质合成的转录调控。每个CHS启动子都有独特的调控模式,并对细胞壁损伤剂的添加、特定CHS基因突变和外源Ca2+作出反应。CHS基因表达和几丁质合成的调控由PKC、HOG丝裂原活化蛋白激酶和Ca2+/钙调神经磷酸酶信号通路协调。这些信号通路的激活还导致体外几丁质合酶活性增加和细胞壁几丁质含量升高。激活多个信号通路的联合处理导致CHS表达和细胞壁几丁质含量协同增加。因此,至少有三条信号通路协同调节几丁质合成,几丁质合成的激活在转录和转录后水平均起作用。

相似文献

1
The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans.
Mol Microbiol. 2007 Mar;63(5):1399-413. doi: 10.1111/j.1365-2958.2007.05588.x.
3
Dissection of the Candida albicans class I chitin synthase promoters.
Mol Genet Genomics. 2009 Apr;281(4):459-71. doi: 10.1007/s00438-009-0423-0. Epub 2009 Jan 20.
4
Effect of plagiochin E, an antifungal macrocyclic bis(bibenzyl), on cell wall chitin synthesis in Candida albicans.
Acta Pharmacol Sin. 2008 Dec;29(12):1478-85. doi: 10.1111/j.1745-7254.2008.00900.x.
6
Individual chitin synthase enzymes synthesize microfibrils of differing structure at specific locations in the Candida albicans cell wall.
Mol Microbiol. 2007 Dec;66(5):1164-73. doi: 10.1111/j.1365-2958.2007.05990.x. Epub 2007 Oct 29.
7
Regulation of chitin synthesis during dimorphic growth of Candida albicans.
Microbiology (Reading). 1998 Feb;144 ( Pt 2):391-401. doi: 10.1099/00221287-144-2-391.
8
Cell wall protection by the Candida albicans class I chitin synthases.
Fungal Genet Biol. 2015 Sep;82:264-76. doi: 10.1016/j.fgb.2015.08.001. Epub 2015 Aug 7.
9
Melanin externalization in Candida albicans depends on cell wall chitin structures.
Eukaryot Cell. 2010 Sep;9(9):1329-42. doi: 10.1128/EC.00051-10. Epub 2010 Jun 11.
10
Role of three chitin synthase genes in the growth of Candida albicans.
J Bacteriol. 1996 Apr;178(8):2416-9. doi: 10.1128/jb.178.8.2416-2419.1996.

引用本文的文献

1
Biofilm-Associated Candidiasis: Pathogenesis, Prevalence, Challenges and Therapeutic Options.
Pharmaceuticals (Basel). 2025 Mar 25;18(4):460. doi: 10.3390/ph18040460.
2
The role of Npt1 in regulating antifungal protein activity in filamentous fungi.
Nat Commun. 2025 Mar 23;16(1):2850. doi: 10.1038/s41467-025-58230-6.
3
Sdd3 regulates the biofilm formation of via the Rho1-PKC-MAPK pathway.
mBio. 2025 Feb 5;16(2):e0328324. doi: 10.1128/mbio.03283-24. Epub 2024 Dec 17.
4
Caffeine Protects Keratinocytes from Infection and Behaves as an Antidermatophytic Agent.
Int J Mol Sci. 2024 Jul 30;25(15):8303. doi: 10.3390/ijms25158303.
6
Molecular mechanisms governing antifungal drug resistance.
NPJ Antimicrob Resist. 2023;1(1):5. doi: 10.1038/s44259-023-00007-2. Epub 2023 Jul 17.
7
Molecular Mechanisms Associated with Antifungal Resistance in Pathogenic Species.
Cells. 2023 Nov 19;12(22):2655. doi: 10.3390/cells12222655.
9
Caspofungin-induced β(1,3)-glucan exposure in is driven by increased chitin levels.
mBio. 2023 Aug 31;14(4):e0007423. doi: 10.1128/mbio.00074-23. Epub 2023 Jun 28.

本文引用的文献

2
Cell wall construction in Saccharomyces cerevisiae.
Yeast. 2006 Feb;23(3):185-202. doi: 10.1002/yea.1349.
3
CRZ1, a target of the calcineurin pathway in Candida albicans.
Mol Microbiol. 2006 Mar;59(5):1429-51. doi: 10.1111/j.1365-2958.2005.05037.x.
5
Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity.
FEMS Yeast Res. 2006 Jan;6(1):14-29. doi: 10.1111/j.1567-1364.2005.00017.x.
7
Outer chain N-glycans are required for cell wall integrity and virulence of Candida albicans.
J Biol Chem. 2006 Jan 6;281(1):90-8. doi: 10.1074/jbc.M510360200. Epub 2005 Nov 1.
9
The MAP kinase Mkc1p is activated under different stress conditions in Candida albicans.
Microbiology (Reading). 2005 Aug;151(Pt 8):2737-2749. doi: 10.1099/mic.0.28038-0.
10
The calcineurin target, Crz1, functions in azole tolerance but is not required for virulence of Candida albicans.
Infect Immun. 2004 Dec;72(12):7330-3. doi: 10.1128/IAI.72.12.7330-7333.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验