文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

抗真菌药物耐药性的分子机制。

Molecular mechanisms governing antifungal drug resistance.

作者信息

Lee Yunjin, Robbins Nicole, Cowen Leah E

机构信息

Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada.

出版信息

NPJ Antimicrob Resist. 2023;1(1):5. doi: 10.1038/s44259-023-00007-2. Epub 2023 Jul 17.


DOI:10.1038/s44259-023-00007-2
PMID:38686214
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11057204/
Abstract

Fungal pathogens are a severe public health problem. The leading causative agents of systemic fungal infections include species from the , , and genera. As opportunistic pathogens, these fungi are generally harmless in healthy hosts; however, they can cause significant morbidity and mortality in immunocompromised patients. Despite the profound impact of pathogenic fungi on global human health, the current antifungal armamentarium is limited to only three major classes of drugs, all of which face complications, including host toxicity, unfavourable pharmacokinetics, or limited spectrum of activity. Further exacerbating this issue is the growing prevalence of antifungal-resistant infections and the emergence of multidrug-resistant pathogens. In this review, we discuss the diverse strategies employed by leading fungal pathogens to evolve antifungal resistance, including drug target alterations, enhanced drug efflux, and induction of cellular stress response pathways. Such mechanisms of resistance occur through diverse genetic alterations, including point mutations, aneuploidy formation, and epigenetic changes given the significant plasticity observed in many fungal genomes. Additionally, we highlight recent literature surrounding the mechanisms governing resistance in emerging multidrug-resistant pathogens including and . Advancing our knowledge of the molecular mechanisms by which fungi adapt to the challenge of antifungal exposure is imperative for designing therapeutic strategies to tackle the emerging threat of antifungal resistance.

摘要

真菌病原体是一个严重的公共卫生问题。系统性真菌感染的主要病原体包括来自曲霉属、念珠菌属和隐球菌属的菌种。作为机会性病原体,这些真菌在健康宿主中通常无害;然而,它们可在免疫功能低下的患者中导致显著的发病率和死亡率。尽管致病真菌对全球人类健康有深远影响,但目前的抗真菌药物库仅限于三大类药物,所有这些药物都面临并发症,包括宿主毒性、不良药代动力学或有限的活性谱。抗真菌耐药感染的日益流行和多重耐药病原体的出现进一步加剧了这一问题。在本综述中,我们讨论了主要真菌病原体为产生抗真菌耐药性而采用的多种策略,包括药物靶点改变、增强药物外排以及诱导细胞应激反应途径。这种耐药机制通过多种基因改变发生,包括点突变、非整倍体形成以及鉴于在许多真菌基因组中观察到的显著可塑性而产生的表观遗传变化。此外,我们强调了围绕新兴多重耐药病原体(包括耳念珠菌和烟曲霉)耐药机制的最新文献。深入了解真菌适应抗真菌暴露挑战的分子机制对于设计应对抗真菌耐药性这一新兴威胁的治疗策略至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ca/11721396/de092bd8290a/44259_2023_7_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ca/11721396/aa4f084306c5/44259_2023_7_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ca/11721396/240de88f007c/44259_2023_7_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ca/11721396/de092bd8290a/44259_2023_7_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ca/11721396/aa4f084306c5/44259_2023_7_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ca/11721396/240de88f007c/44259_2023_7_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ca/11721396/de092bd8290a/44259_2023_7_Fig3_HTML.jpg

相似文献

[1]
Molecular mechanisms governing antifungal drug resistance.

NPJ Antimicrob Resist. 2023

[2]
The Quiet and Underappreciated Rise of Drug-Resistant Invasive Fungal Pathogens.

J Fungi (Basel). 2020-8-18

[3]
Resistance in human pathogenic yeasts and filamentous fungi: prevalence, underlying molecular mechanisms and link to the use of antifungals in humans and the environment.

Dan Med J. 2016-10

[4]
Alexidine Dihydrochloride Has Broad-Spectrum Activities against Diverse Fungal Pathogens.

mSphere. 2018-10-31

[5]
Genetic Analysis of Implicates Hsp90 in Morphogenesis and Azole Tolerance and Cdr1 in Azole Resistance.

mBio. 2019-1-29

[6]
Invasive Fungal Infections in Patients with Hematological Malignancies: Emergence of Resistant Pathogens and New Antifungal Therapies.

Turk J Haematol. 2018-3-1

[7]
The Trisubstituted Isoxazole MMV688766 Exerts Broad-Spectrum Activity against Drug-Resistant Fungal Pathogens through Inhibition of Lipid Homeostasis.

mBio. 2022-12-20

[8]
The Two-Component Response Regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 Control Antifungal Drug Resistance and Cell Wall Architecture of Candida auris.

mSphere. 2020-10-14

[9]
A chemical screen identifies structurally diverse metal chelators with activity against the fungal pathogen .

Microbiol Spectr. 2024-4-2

[10]
The Gcn5 lysine acetyltransferase mediates cell wall remodeling, antifungal drug resistance, and virulence of .

mSphere. 2025-4-29

引用本文的文献

[1]
Extracellular Vesicles From Fungal Infection in Humans: A Key Player in Immunological Responses.

J Extracell Biol. 2025-8-27

[2]
Antifungal Drugs for the Treatment of Invasive Fungal Infections-A Limited Therapeutic Toolbox Facing Growing Resistances.

Pharmaceuticals (Basel). 2025-8-19

[3]
Opportunistic pathogens and polycocktail drugs fuel dynamic public health threats during the opioid crisis.

PLoS One. 2025-8-12

[4]
FungAMR: a comprehensive database for investigating fungal mutations associated with antimicrobial resistance.

Nat Microbiol. 2025-8-11

[5]
Epidemiology risk factors and antifungal resistance patterns of in cancer patients in Jiangxi China.

Front Microbiol. 2025-7-22

[6]
Wss1 and Ddi1 DNA-Protein crosslink repair proteases protect Saccharomyces cerevisiae and Candida albicans against oxidative stress.

Sci Rep. 2025-7-23

[7]
Machine learning identifies novel signatures of antifungal drug resistance in yeasts.

bioRxiv. 2025-5-10

[8]
Antifungal resistance: Emerging mechanisms and implications (Review).

Mol Med Rep. 2025-9

[9]
Epimutations driven by RNAi or heterochromatin evoke antifungal drug resistance in human fungal pathogens.

bioRxiv. 2025-7-11

[10]
Tn-seq screens in treated with echinocandins and ibrexafungerp reveal pathways of antifungal resistance and cross-resistance.

mSphere. 2025-7-29

本文引用的文献

[1]
Structural and mechanistic insights into fungal β-1,3-glucan synthase FKS1.

Nature. 2023-4

[2]
Antifungal Drug Concentration Impacts the Spectrum of Adaptive Mutations in Candida albicans.

Mol Biol Evol. 2023-1-4

[3]
The molecular and genetic basis of antifungal resistance in the emerging fungal pathogen Candida auris.

Curr Opin Microbiol. 2022-12

[4]
Structural basis for activation of fungal sterol receptor Upc2 and azole resistance.

Nat Chem Biol. 2022-11

[5]
The importance of antimicrobial resistance in medical mycology.

Nat Commun. 2022-9-12

[6]
The global burden of HIV-associated cryptococcal infection in adults in 2020: a modelling analysis.

Lancet Infect Dis. 2022-12

[7]
Antifungal discovery.

Curr Opin Microbiol. 2022-10

[8]
Functional analysis of the kinome reveals Hrr25 as a regulator of antifungal susceptibility.

iScience. 2022-5-18

[9]
Histone Acetylation Regulator Gcn5 Mediates Drug Resistance and Virulence of Candida glabrata.

Microbiol Spectr. 2022-6-29

[10]
Horizontal Gene Transfer of Triazole Resistance in Aspergillus fumigatus.

Microbiol Spectr. 2022-6-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索