Suppr超能文献

使用人工神经网络模型对事件持续时间进行序列预测。

Sequential forecast of incident duration using Artificial Neural Network models.

作者信息

Wei Chien-Hung, Lee Ying

机构信息

Department of Transportation and Communication Management Science, National Cheng Kung University, 1 Ta-Hsueh Rd., Tainan 70101, Taiwan, ROC.

出版信息

Accid Anal Prev. 2007 Sep;39(5):944-54. doi: 10.1016/j.aap.2006.12.017. Epub 2007 Feb 14.

Abstract

This study creates an adaptive procedure for sequential forecasting of incident duration. This adaptive procedure includes two adaptive Artificial Neural Network-based models as well as the data fusion techniques to forecast incident duration. Model A is used to forecast the duration time at the time of incident notification, while Model B provides multi-period updates of duration time after the incident notification. These two models together provide a sequential forecast of incident duration from the point of incident notification to the incident road clearance. Model inputs include incident characteristics, traffic data, time gap, space gap, and geometric characteristics. The model performance of mean absolute percentage error for forecasted incident duration at each time point of forecast are mostly under 40%, which indicates that the proposed models have a reasonable forecast ability. With these two models, the estimated duration time can be provided by plugging in relevant traffic data as soon as an incident is reported. Thereby travelers and traffic management units can better understand the impact of the existing incident. Based on the model effect assessments, this study shows that the proposed models are feasible in the Intelligent Transportation Systems (ITS) context.

摘要

本研究创建了一种用于事件持续时间序列预测的自适应程序。该自适应程序包括两个基于自适应人工神经网络的模型以及用于预测事件持续时间的数据融合技术。模型A用于在事件通知时预测持续时间,而模型B在事件通知后提供持续时间的多周期更新。这两个模型共同提供了从事件通知点到事件道路清理的事件持续时间的序列预测。模型输入包括事件特征、交通数据、时间间隔、空间间隔和几何特征。在每个预测时间点,预测事件持续时间的平均绝对百分比误差的模型性能大多在40%以下,这表明所提出的模型具有合理的预测能力。利用这两个模型,一旦报告事件,通过插入相关交通数据就可以提供估计的持续时间。从而旅行者和交通管理单位可以更好地了解现有事件的影响。基于模型效果评估,本研究表明所提出的模型在智能交通系统(ITS)背景下是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验