Suppr超能文献

利用人工神经网络创建葡萄霜霉病菌感染预测模型的人工智能方法。

Artificial intelligence approach with the use of artificial neural networks for the creation of a forecasting model of Plasmopara viticola infection.

作者信息

Bugliosi R, Spera G, La Torre A, Campoli L, Scaglione M

出版信息

Commun Agric Appl Biol Sci. 2006;71(3 Pt A):859-65.

Abstract

Most of the forecasting models of Plasmopara viticola infections are based upon empiric correlations between meteorological/environmental data and pathogen outbreak. These models generally overestimate the risk of infections and induce to treat the vineyard even if it should be not necessary. In rare cases they underrate the risk of infection leaving the pathogen to breakout. Starting from these considerations we have decided to approach the problem from another point of view utilizing Artificial Intelligence techniques for data elaboration and analysis. Meanwhile the same data have been studied with a more classic approach with statistical tools to verify the impact of a large data collection on the standard data analysis methods. A network of RTUs (Remote Terminal Units) distributed all over the Italian national territory transmits 12 environmental parameters every 15 minutes via radio or via GPRS to a centralized Data Base. Other pedologic data is collected directly from the field and sent via Internet to the centralized data base utilizing Personal Digital Assistants (PDAs) running a specific software. Data is stored after having been preprocessed, to guarantee the quality of the information. The subsequent analysis has been realized mostly with Artificial Neural Networks (ANNs). Collecting and analizing data in this way will probably bring us to the possibility of preventing Plasmospara viticola infection starting from the environmental conditions in this very complex context. The aim of this work is to forecast the infection avoiding the ineffective use of the plant protection products in agriculture. Applying different analysis models we will try to find the best ANN capable of forecasting with an high level of affordability.

摘要

大多数葡萄霜霉病菌感染预测模型基于气象/环境数据与病原菌爆发之间的经验相关性。这些模型通常高估感染风险,导致即使不必要也对葡萄园进行处理。在极少数情况下,它们会低估感染风险,任由病原菌爆发。基于这些考虑,我们决定从另一个角度来处理这个问题,利用人工智能技术进行数据处理和分析。同时,我们用更经典的统计工具方法研究了相同的数据,以验证大量数据收集对标准数据分析方法的影响。一个分布在意大利全国领土上的远程终端单元(RTU)网络每15分钟通过无线电或GPRS将12个环境参数传输到一个集中式数据库。其他土壤学数据直接从田间收集,并通过运行特定软件的个人数字助理(PDA)通过互联网发送到集中式数据库。数据在经过预处理后进行存储,以保证信息质量。后续分析主要通过人工神经网络(ANN)实现。以这种方式收集和分析数据可能会使我们有可能从这个非常复杂环境中的环境条件出发预防葡萄霜霉病菌感染。这项工作的目的是预测感染情况,避免在农业中无效使用植物保护产品。应用不同的分析模型,我们将试图找到能够以高可信度进行预测的最佳人工神经网络。

相似文献

5
Grapevine downy mildew control in organic farming.
Commun Agric Appl Biol Sci. 2005;70(3):371-9.
6
Control of downy mildew on grapes in organic viticulture.
Commun Agric Appl Biol Sci. 2008;73(2):169-78.
8
An ANN application for water quality forecasting.
Mar Pollut Bull. 2008 Sep;56(9):1586-97. doi: 10.1016/j.marpolbul.2008.05.021. Epub 2008 Jul 16.
9
Sequential forecast of incident duration using Artificial Neural Network models.
Accid Anal Prev. 2007 Sep;39(5):944-54. doi: 10.1016/j.aap.2006.12.017. Epub 2007 Feb 14.
10
Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends.
Chemosphere. 2005 Apr;59(5):693-701. doi: 10.1016/j.chemosphere.2004.10.032. Epub 2004 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验