Suppr超能文献

锌离子对天然牛视紫红质的稳定作用。

Stabilizing effect of Zn2+ in native bovine rhodopsin.

作者信息

Park Paul S-H, Sapra K Tanuj, Koliński Michał, Filipek Sławomir, Palczewski Krzysztof, Muller Daniel J

机构信息

Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA.

出版信息

J Biol Chem. 2007 Apr 13;282(15):11377-85. doi: 10.1074/jbc.M610341200. Epub 2007 Feb 15.

Abstract

Single-molecule force spectroscopy (SMFS) is a powerful tool to dissect molecular interactions that govern the stability and function of proteins. We applied SMFS to understand the effect of Zn2+ on the molecular interactions underlying the structure of rhodopsin. Force-distance curves obtained from SMFS assays revealed the strength and location of molecular interactions that stabilize structural segments within this receptor. The inclusion of ZnCl2 in SMFS assay buffer increased the stability of most structural segments. This effect was not mimicked by CaCl2, CdCl2, or CoCl2. Thus, Zn2+ stabilizes the structure of rhodopsin in a specific manner.

摘要

单分子力谱(SMFS)是一种剖析决定蛋白质稳定性和功能的分子相互作用的强大工具。我们应用单分子力谱来了解锌离子(Zn2+)对视紫红质结构基础分子相互作用的影响。从单分子力谱分析中获得的力-距离曲线揭示了稳定该受体结构片段的分子相互作用的强度和位置。在单分子力谱分析缓冲液中加入氯化锌(ZnCl2)可增加大多数结构片段的稳定性。氯化钙(CaCl2)、氯化镉(CdCl2)或氯化钴(CoCl2)无法模拟这种效应。因此,锌离子以特定方式稳定视紫红质的结构。

相似文献

1
Stabilizing effect of Zn2+ in native bovine rhodopsin.
J Biol Chem. 2007 Apr 13;282(15):11377-85. doi: 10.1074/jbc.M610341200. Epub 2007 Feb 15.
2
Detecting molecular interactions that stabilize native bovine rhodopsin.
J Mol Biol. 2006 Apr 21;358(1):255-69. doi: 10.1016/j.jmb.2006.02.008. Epub 2006 Feb 20.
3
Conservation of molecular interactions stabilizing bovine and mouse rhodopsin.
Biochemistry. 2010 Dec 14;49(49):10412-20. doi: 10.1021/bi101345x. Epub 2010 Nov 11.
5
Structural characterization of a zinc high-affinity binding site in rhodopsin.
Photochem Photobiol. 2009 Mar-Apr;85(2):479-84. doi: 10.1111/j.1751-1097.2008.00529.x. Epub 2009 Feb 11.
6
Kinetic, energetic, and mechanical differences between dark-state rhodopsin and opsin.
Structure. 2013 Mar 5;21(3):426-37. doi: 10.1016/j.str.2013.01.011. Epub 2013 Feb 21.
8
Folding and assembly of rhodopsin from expressed fragments.
Methods Enzymol. 2000;315:59-70. doi: 10.1016/s0076-6879(00)15834-3.
9
Structure of the third cytoplasmic loop of bovine rhodopsin.
Biochemistry. 1995 Nov 14;34(45):14621-5. doi: 10.1021/bi00045a002.
10
Modulation of molecular interactions and function by rhodopsin palmitylation.
Biochemistry. 2009 May 26;48(20):4294-304. doi: 10.1021/bi900417b.

引用本文的文献

1
Understanding the Rhodopsin Worldview Through Atomic Force Microscopy (AFM): Structure, Stability, and Activity Studies.
Chem Rec. 2023 Oct;23(10):e202300113. doi: 10.1002/tcr.202300113. Epub 2023 Jun 2.
2
Substrate-binding guides individual melibiose permeases MelB to structurally soften and to destabilize cytoplasmic middle-loop C3.
Structure. 2023 Jan 5;31(1):58-67.e4. doi: 10.1016/j.str.2022.11.011. Epub 2022 Dec 15.
3
Native Mass Spectrometry Reveals the Simultaneous Binding of Lipids and Zinc to Rhodopsin.
Int J Mass Spectrom. 2021 Feb;460. doi: 10.1016/j.ijms.2020.116477. Epub 2020 Nov 20.
4
Cation-induced shape programming and morphing in protein-based hydrogels.
Sci Adv. 2020 Apr 29;6(18):eaba6112. doi: 10.1126/sciadv.aba6112. eCollection 2020 May.
5
Seeing and sensing single G protein-coupled receptors by atomic force microscopy.
Curr Opin Cell Biol. 2019 Apr;57:25-32. doi: 10.1016/j.ceb.2018.10.006. Epub 2018 Nov 6.
6
Two zinc-binding domains in the transporter AdcA from facilitate high-affinity binding and fast transport of zinc.
J Biol Chem. 2018 Apr 20;293(16):6075-6089. doi: 10.1074/jbc.M117.818997. Epub 2018 Feb 28.
7
Applications of Single-Molecule Methods to Membrane Protein Folding Studies.
J Mol Biol. 2018 Feb 16;430(4):424-437. doi: 10.1016/j.jmb.2017.05.021. Epub 2017 May 23.
8
Observing a lipid-dependent alteration in single lactose permeases.
Structure. 2015 Apr 7;23(4):754-61. doi: 10.1016/j.str.2015.02.009. Epub 2015 Mar 19.
9
Dynamic single-molecule force spectroscopy of rhodopsin in native membranes.
Methods Mol Biol. 2015;1271:173-85. doi: 10.1007/978-1-4939-2330-4_12.
10
Chemistry and biology of the initial steps in vision: the Friedenwald lecture.
Invest Ophthalmol Vis Sci. 2014 Oct 22;55(10):6651-72. doi: 10.1167/iovs.14-15502.

本文引用的文献

1
Differentiating ligand and inhibitor interactions of a single antiporter.
J Mol Biol. 2006 Oct 6;362(5):925-32. doi: 10.1016/j.jmb.2006.07.049. Epub 2006 Jul 28.
2
Single-molecule studies of membrane proteins.
Curr Opin Struct Biol. 2006 Aug;16(4):489-95. doi: 10.1016/j.sbi.2006.06.001. Epub 2006 Jun 23.
3
G protein-coupled receptor rhodopsin.
Annu Rev Biochem. 2006;75:743-67. doi: 10.1146/annurev.biochem.75.103004.142743.
4
Detecting molecular interactions that stabilize native bovine rhodopsin.
J Mol Biol. 2006 Apr 21;358(1):255-69. doi: 10.1016/j.jmb.2006.02.008. Epub 2006 Feb 20.
5
Identification of a Zn2+-binding site on the dopamine D2 receptor.
Biochem Biophys Res Commun. 2006 Jan 20;339(3):873-9. doi: 10.1016/j.bbrc.2005.11.110.
6
Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy.
J Mol Biol. 2006 Jan 27;355(4):640-50. doi: 10.1016/j.jmb.2005.10.080. Epub 2005 Nov 17.
7
Imaging and detecting molecular interactions of single transmembrane proteins.
Neurobiol Aging. 2006 Apr;27(4):546-61. doi: 10.1016/j.neurobiolaging.2005.03.031. Epub 2005 Oct 25.
8
GROMACS: fast, flexible, and free.
J Comput Chem. 2005 Dec;26(16):1701-18. doi: 10.1002/jcc.20291.
9
Locating ligand binding and activation of a single antiporter.
EMBO Rep. 2005 Jul;6(7):668-74. doi: 10.1038/sj.embor.7400455.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验