Suppr超能文献

视紫红质棕榈酰化对分子相互作用和功能的调节

Modulation of molecular interactions and function by rhodopsin palmitylation.

作者信息

Park Paul S-H, Sapra K Tanuj, Jastrzebska Beata, Maeda Tadao, Maeda Akiko, Pulawski Wojciech, Kono Masahiro, Lem Janis, Crouch Rosalie K, Filipek Slawomir, Müller Daniel J, Palczewski Krzysztof

机构信息

Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA.

出版信息

Biochemistry. 2009 May 26;48(20):4294-304. doi: 10.1021/bi900417b.

Abstract

Rhodopsin is palmitylated at two cysteine residues in its carboxyl terminal region. We have looked at the effects of palmitylation on the molecular interactions formed by rhodopsin using single-molecule force spectroscopy and the function of rhodopsin using both in vitro and in vivo approaches. A knockin mouse model expressing palmitate-deficient rhodopsin was used for live animal in vivo studies and to obtain native tissue samples for in vitro assays. We specifically looked at the effects of palmitylation on the chromophore-binding pocket, interactions of rhodopsin with transducin, and molecular interactions stabilizing the receptor structure. The structure of rhodopsin is largely unperturbed by the absence of palmitate linkage. The binding pocket for the chromophore 11-cis-retinal is minimally altered as palmitate-deficient rhodopsin exhibited the same absorbance spectrum as wild-type rhodopsin. Similarly, the rate of release of all-trans-retinal after light activation was the same both in the presence and absence of palmitylation. Significant differences were observed in the rate of transducin activation by rhodopsin and in the force required to unfold the last stable structural segment in rhodopsin at its carboxyl terminal end. A 1.3-fold reduction in the rate of transducin activation by rhodopsin was observed in the absence of palmitylation. Single-molecule force spectroscopy revealed a 2.1-fold reduction in the normalized force required to unfold the carboxyl terminal end of rhodopsin. The absence of palmitylation in rhodopsin therefore destabilizes the molecular interactions formed in the carboxyl terminal end of the receptor, which appears to hinder the activation of transducin by light-activated rhodopsin.

摘要

视紫红质在其羧基末端区域的两个半胱氨酸残基处发生棕榈酰化。我们使用单分子力谱研究了棕榈酰化对视紫红质形成的分子相互作用的影响,并使用体外和体内方法研究了视紫红质的功能。一个表达棕榈酸缺乏型视紫红质的敲入小鼠模型被用于活体动物的体内研究,并获取用于体外测定的天然组织样本。我们特别研究了棕榈酰化对发色团结合口袋、视紫红质与转导蛋白的相互作用以及稳定受体结构的分子相互作用的影响。视紫红质的结构在没有棕榈酸连接的情况下基本未受干扰。发色团11-顺式视黄醛的结合口袋变化最小,因为棕榈酸缺乏型视紫红质表现出与野生型视紫红质相同的吸收光谱。同样,在有和没有棕榈酰化的情况下,光激活后全反式视黄醛的释放速率相同。在视紫红质激活转导蛋白的速率以及展开视紫红质羧基末端最后一个稳定结构片段所需的力方面观察到了显著差异。在没有棕榈酰化的情况下,视紫红质激活转导蛋白的速率降低了1.3倍。单分子力谱显示,展开视紫红质羧基末端所需的归一化力降低了2.1倍。因此,视紫红质中缺乏棕榈酰化会使受体羧基末端形成的分子相互作用不稳定,这似乎阻碍了光激活的视紫红质对转导蛋白的激活。

相似文献

1
Modulation of molecular interactions and function by rhodopsin palmitylation.
Biochemistry. 2009 May 26;48(20):4294-304. doi: 10.1021/bi900417b.
3
Rod outer segment retinol formation is independent of Abca4, arrestin, rhodopsin kinase, and rhodopsin palmitylation.
Invest Ophthalmol Vis Sci. 2011 Jun 1;52(6):3483-91. doi: 10.1167/iovs.10-6694.
4
Depalmitoylation of rhodopsin with hydroxylamine.
Methods Enzymol. 1995;250:348-61. doi: 10.1016/0076-6879(95)50084-7.
6
Quantitation of the effect of hydroxylamine on rhodopsin palmitylation.
Photochem Photobiol. 2008 Jul-Aug;84(4):949-55. doi: 10.1111/j.1751-1097.2008.00334.x. Epub 2008 Apr 9.
7
Rhodopsin activation exposes a key hydrophobic binding site for the transducin alpha-subunit C terminus.
J Biol Chem. 2004 Jul 9;279(28):29767-73. doi: 10.1074/jbc.M402567200. Epub 2004 Apr 7.
8
Probing rhodopsin-transducin interactions by surface modification and mass spectrometry.
Biochemistry. 2004 Sep 7;43(35):11153-62. doi: 10.1021/bi049642f.
10
Signaling states of rhodopsin in rod disk membranes lacking transducin βγ-complex.
Invest Ophthalmol Vis Sci. 2012 Mar 9;53(3):1225-33. doi: 10.1167/iovs.11-9350. Print 2012 Mar.

引用本文的文献

2
Understanding the Rhodopsin Worldview Through Atomic Force Microscopy (AFM): Structure, Stability, and Activity Studies.
Chem Rec. 2023 Oct;23(10):e202300113. doi: 10.1002/tcr.202300113. Epub 2023 Jun 2.
3
Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering.
Front Chem. 2022 Jun 22;10:879609. doi: 10.3389/fchem.2022.879609. eCollection 2022.
4
Rhodopsin as a Molecular Target to Mitigate Retinitis Pigmentosa.
Adv Exp Med Biol. 2022;1371:61-77. doi: 10.1007/5584_2021_682.
6
Lipid Modifications in Cilia Biology.
J Clin Med. 2019 Jun 27;8(7):921. doi: 10.3390/jcm8070921.
7
Differentiating between Inactive and Active States of Rhodopsin by Atomic Force Microscopy in Native Membranes.
Anal Chem. 2019 Jun 4;91(11):7226-7235. doi: 10.1021/acs.analchem.9b00546. Epub 2019 May 16.
8
Investigating the Nanodomain Organization of Rhodopsin in Native Membranes by Atomic Force Microscopy.
Methods Mol Biol. 2019;1886:61-74. doi: 10.1007/978-1-4939-8894-5_4.
9
Adaptations in rod outer segment disc membranes in response to environmental lighting conditions.
Biochim Biophys Acta Mol Cell Res. 2017 Oct;1864(10):1691-1702. doi: 10.1016/j.bbamcr.2017.06.013. Epub 2017 Jun 20.
10
Photocyclic behavior of rhodopsin induced by an atypical isomerization mechanism.
Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):E2608-E2615. doi: 10.1073/pnas.1617446114. Epub 2017 Mar 13.

本文引用的文献

1
Transducer binding establishes localized interactions to tune sensory rhodopsin II.
Structure. 2008 Aug 6;16(8):1206-13. doi: 10.1016/j.str.2008.04.014.
2
Activation of G protein-coupled receptors: beyond two-state models and tertiary conformational changes.
Annu Rev Pharmacol Toxicol. 2008;48:107-41. doi: 10.1146/annurev.pharmtox.48.113006.094630.
4
Three-dimensional architecture of murine rod outer segments determined by cryoelectron tomography.
J Cell Biol. 2007 Jun 4;177(5):917-25. doi: 10.1083/jcb.200612010. Epub 2007 May 29.
5
Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy.
Annu Rev Biophys Biomol Struct. 2007;36:233-60. doi: 10.1146/annurev.biophys.36.040306.132640.
6
Stabilizing effect of Zn2+ in native bovine rhodopsin.
J Biol Chem. 2007 Apr 13;282(15):11377-85. doi: 10.1074/jbc.M610341200. Epub 2007 Feb 15.
7
Visual rhodopsin sees the light: structure and mechanism of G protein signaling.
J Biol Chem. 2007 Mar 30;282(13):9297-9301. doi: 10.1074/jbc.R600032200. Epub 2007 Feb 8.
8
Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents.
Annu Rev Pharmacol Toxicol. 2007;47:469-512. doi: 10.1146/annurev.pharmtox.47.120505.105225.
9
G protein-coupled receptor rhodopsin.
Annu Rev Biochem. 2006;75:743-67. doi: 10.1146/annurev.biochem.75.103004.142743.
10
Co-ordinated covalent modification of G-protein coupled receptors.
Curr Pharm Des. 2006;12(14):1797-808. doi: 10.2174/138161206776873716.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验