文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

鲁棒的血管分割与中心线提取:单阶段深度学习方法

The Robust Vessel Segmentation and Centerline Extraction: One-Stage Deep Learning Approach.

作者信息

Epifanov Rostislav, Fedotova Yana, Dyachuk Savely, Gostev Alexandr, Karpenko Andrei, Mullyadzhanov Rustam

机构信息

Department of Mathematics and Mechanics, Novosibirsk State University, Novosibirsk 630090, Russia.

Meshalkin National Medical Research Center, Novosibirsk 630055, Russia.

出版信息

J Imaging. 2025 Jun 26;11(7):209. doi: 10.3390/jimaging11070209.


DOI:10.3390/jimaging11070209
PMID:40710596
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12295992/
Abstract

The accurate segmentation of blood vessels and centerline extraction are critical in vascular imaging applications, ranging from preoperative planning to hemodynamic modeling. This study introduces a novel one-stage method for simultaneous vessel segmentation and centerline extraction using a multitask neural network. We designed a hybrid architecture that integrates convolutional and graph layers, along with a task-specific loss function, to effectively capture the topological relationships between segmentation and centerline extraction, leveraging their complementary features. The proposed end-to-end framework directly predicts the centerline as a polyline with real-valued coordinates, thereby eliminating the need for post-processing steps commonly required by previous methods that infer centerlines either implicitly or without ensuring point connectivity. We evaluated our approach on a combined dataset of 142 computed tomography angiography images of the thoracic and abdominal regions from LIDC-IDRI and AMOS datasets. The results demonstrate that our method achieves superior centerline extraction performance (Surface Dice with threshold of 3 mm: 97.65%±2.07%) compared to state-of-the-art techniques, and attains the highest subvoxel resolution (Surface Dice with threshold of 1 mm: 72.52%±8.96%). In addition, we conducted a robustness analysis to evaluate the model stability under small rigid and deformable transformations of the input data, and benchmarked its robustness against the widely used VMTK toolkit.

摘要

血管的精确分割和中心线提取在血管成像应用中至关重要,涵盖从术前规划到血流动力学建模等多个方面。本研究介绍了一种新颖的单阶段方法,该方法使用多任务神经网络同时进行血管分割和中心线提取。我们设计了一种混合架构,它集成了卷积层和图层,以及一个特定任务的损失函数,以有效捕捉分割和中心线提取之间的拓扑关系,利用它们的互补特征。所提出的端到端框架直接将中心线预测为具有实值坐标的折线,从而无需先前方法通常所需的后处理步骤,先前方法要么隐式推断中心线,要么无法确保点的连通性。我们在来自LIDC-IDRI和AMOS数据集的142张胸部和腹部计算机断层血管造影图像的组合数据集上评估了我们的方法。结果表明,与现有技术相比,我们的方法实现了卓越的中心线提取性能(阈值为3毫米时的表面骰子系数:97.65%±2.07%),并获得了最高的亚体素分辨率(阈值为1毫米时的表面骰子系数:72.52%±8.96%)。此外,我们进行了稳健性分析,以评估模型在输入数据的小刚性和可变形变换下的稳定性,并将其稳健性与广泛使用的VMTK工具包进行了基准测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c825/12295992/22471f116c3f/jimaging-11-00209-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c825/12295992/ab5f145ebdb1/jimaging-11-00209-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c825/12295992/3554cc5377d2/jimaging-11-00209-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c825/12295992/543b4fe36760/jimaging-11-00209-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c825/12295992/0215151fd0e4/jimaging-11-00209-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c825/12295992/22471f116c3f/jimaging-11-00209-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c825/12295992/ab5f145ebdb1/jimaging-11-00209-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c825/12295992/3554cc5377d2/jimaging-11-00209-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c825/12295992/543b4fe36760/jimaging-11-00209-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c825/12295992/0215151fd0e4/jimaging-11-00209-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c825/12295992/22471f116c3f/jimaging-11-00209-g004.jpg

相似文献

[1]
The Robust Vessel Segmentation and Centerline Extraction: One-Stage Deep Learning Approach.

J Imaging. 2025-6-26

[2]
Segmentation-assisted vessel centerline extraction from cerebral CT Angiography.

Med Phys. 2025-7

[3]
Point-cloud segmentation with in-silico data augmentation for prostate cancer treatment.

Med Phys. 2025-4-3

[4]
Influence of early through late fusion on pancreas segmentation from imperfectly registered multimodal magnetic resonance imaging.

J Med Imaging (Bellingham). 2025-3

[5]
Adversarial training with misaligned label correction for carotid segmentation from simultaneous non-contrast angiography and intraplaque hemorrhage MRI.

Med Phys. 2025-7

[6]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[7]
A CNN-transformer-based hybrid U-shape model with long-range relay for esophagus 3D CT image gross tumor volume segmentation.

Med Phys. 2025-7

[8]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[9]
D-RD-UNet: A dual-stage dual-class framework with connectivity correction for hepatic vessels segmentation.

Comput Biol Med. 2025-9

[10]
An open-source deep learning framework for respiratory motion monitoring and volumetric imaging during radiation therapy.

Med Phys. 2025-7

本文引用的文献

[1]
Topology aware multitask cascaded U-Net for cerebrovascular segmentation.

PLoS One. 2024-12-5

[2]
Developing a nearly automated open-source pipeline for conducting computational fluid dynamics simulations in anterior brain vasculature: a feasibility study.

Sci Rep. 2024-12-4

[3]
Deep learning for 3D vascular segmentation in hierarchical phase contrast tomography: a case study on kidney.

Sci Rep. 2024-11-8

[4]
SeqSeg: Learning Local Segments for Automatic Vascular Model Construction.

Ann Biomed Eng. 2025-1

[5]
Multi-task deep learning for medical image computing and analysis: A review.

Comput Biol Med. 2023-2

[6]
CRIMSON: An open-source software framework for cardiovascular integrated modelling and simulation.

PLoS Comput Biol. 2021-5

[7]
Path planning for endovascular catheterization under curvature constraints via two-phase searching approach.

Int J Comput Assist Radiol Surg. 2021-4

[8]
Role of Computed Tomography in Postoperative Follow-up of Arterial Switch Operation.

J Cardiovasc Imaging. 2021-1

[9]
DeepVesselNet: Vessel Segmentation, Centerline Prediction, and Bifurcation Detection in 3-D Angiographic Volumes.

Front Neurosci. 2020-12-8

[10]
Joint Extraction of Retinal Vessels and Centerlines Based on Deep Semantics and Multi-Scaled Cross-Task Aggregation.

IEEE J Biomed Health Inform. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索