Tyrrell James A, Mahadevan Vijay, Tong Ricky T, Brown Edward B, Jain Rakesh K, Roysam Badrinath
Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.
Microvasc Res. 2005 Nov;70(3):165-78. doi: 10.1016/j.mvr.2005.08.005. Epub 2005 Oct 18.
This paper presents model-based information-theoretic methods to quantify the complexity of tumor microvasculature, taking into account shape, textural, and structural irregularities. The proposed techniques are completely automated, and are applicable to optical slices (3-D) or projection images (2-D). Improvements upon the prior literature include: (i) measuring local (vessel segment) as well as global (entire image) vascular complexity without requiring explicit segmentation or tracing; (ii) focusing on the vessel boundaries in the complexity estimate; and (iii) added robustness to image artifacts common to tumor microvasculature images. Vessels are modeled using a family of super-Gaussian functions that are based on the superquadric modeling primitive common in computer vision. The superquadric generalizes a simple ellipsoid by including shape parameters that allow it to approximate a cylinder with elliptical cross-sections (generalized cylinder). The super-Gaussian is obtained by composing a superquadric with an exponential function giving a form that is similar to a standard Gaussian function but with the ability to produce level sets that approximate generalized cylinders. Importantly, the super-Gaussian is continuous and differentiable so it can be fit to image data using robust non-linear regression. This fitting enables quantification of the intrinsic complexity of vessel data vis-a-vis the super-Gaussian model within a minimum message length (MML) framework. The resulting measures are expressed in units of information (bits). Synthetic and real-data examples are provided to illustrate the proposed measures.
本文提出了基于模型的信息论方法来量化肿瘤微血管的复杂性,同时考虑到形状、纹理和结构的不规则性。所提出的技术是完全自动化的,适用于光学切片(三维)或投影图像(二维)。相对于先前的文献,改进之处包括:(i)无需进行明确的分割或追踪即可测量局部(血管段)以及全局(整个图像)血管复杂性;(ii)在复杂性估计中关注血管边界;(iii)增强了对肿瘤微血管图像常见图像伪影的鲁棒性。血管使用一族基于计算机视觉中常见的超二次建模原语的超高斯函数进行建模。超二次曲面通过包含形状参数对简单椭球体进行了推广,使其能够近似具有椭圆形横截面的圆柱体(广义圆柱体)。超高斯函数是通过将超二次曲面与指数函数组合得到的,其形式类似于标准高斯函数,但能够生成近似广义圆柱体的水平集。重要的是,超高斯函数是连续且可微的,因此可以使用鲁棒非线性回归将其拟合到图像数据中。这种拟合能够在最小消息长度(MML)框架内相对于超高斯模型对血管数据的内在复杂性进行量化。所得测量结果以信息(比特)为单位表示。提供了合成数据和真实数据示例来说明所提出的测量方法。