Masquelier Timothée, Thorpe Simon J
Centre de Recherche Cerveau et Cognition, Centre National de la Recherche Scientifique, Université Paul Sabatier, Faculté de Médecine de Rangueil, Toulouse, France.
PLoS Comput Biol. 2007 Feb 16;3(2):e31. doi: 10.1371/journal.pcbi.0030031. Epub 2007 Jan 2.
Spike timing dependent plasticity (STDP) is a learning rule that modifies synaptic strength as a function of the relative timing of pre- and postsynaptic spikes. When a neuron is repeatedly presented with similar inputs, STDP is known to have the effect of concentrating high synaptic weights on afferents that systematically fire early, while postsynaptic spike latencies decrease. Here we use this learning rule in an asynchronous feedforward spiking neural network that mimics the ventral visual pathway and shows that when the network is presented with natural images, selectivity to intermediate-complexity visual features emerges. Those features, which correspond to prototypical patterns that are both salient and consistently present in the images, are highly informative and enable robust object recognition, as demonstrated on various classification tasks. Taken together, these results show that temporal codes may be a key to understanding the phenomenal processing speed achieved by the visual system and that STDP can lead to fast and selective responses.
尖峰时间依赖可塑性(STDP)是一种学习规则,它根据突触前和突触后尖峰的相对时间来改变突触强度。当一个神经元反复接收到相似的输入时,已知STDP会将高突触权重集中在系统性早期放电的传入神经上,同时突触后尖峰潜伏期会缩短。在这里,我们在一个模仿腹侧视觉通路的异步前馈脉冲神经网络中使用这种学习规则,结果表明,当网络呈现自然图像时,会出现对中等复杂度视觉特征的选择性。这些特征对应于图像中既显著又持续存在的典型模式,具有很高的信息量,并能实现强大的目标识别,这在各种分类任务中都得到了证明。综上所述,这些结果表明,时间编码可能是理解视觉系统所实现的惊人处理速度的关键,并且STDP可以导致快速且选择性的反应。