Suppr超能文献

自由空间光学脉冲神经网络。

Free-space optical spiking neural network.

作者信息

Ahmadi Reyhane, Ahmadnejad Amirreza, Koohi Somayyeh

机构信息

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.

Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran.

出版信息

PLoS One. 2024 Dec 30;19(12):e0313547. doi: 10.1371/journal.pone.0313547. eCollection 2024.

Abstract

Neuromorphic engineering has emerged as a promising avenue for developing brain-inspired computational systems. However, conventional electronic AI-based processors often encounter challenges related to processing speed and thermal dissipation. As an alternative, optical implementations of such processors have been proposed, capitalizing on the intrinsic information-processing capabilities of light. Among the various Optical Neural Networks (ONNs) explored within the realm of optical neuromorphic engineering, Spiking Neural Networks (SNNs) have exhibited notable success in emulating the computational principles of the human brain. The event-based spiking nature of optical SNNs offers capabilities in low-power operation, speed, temporal processing, analog computing, and hardware efficiency that are difficult or impossible to match with other ONN types. In this work, we introduce the pioneering Free-space Optical Deep Spiking Convolutional Neural Network (OSCNN), a novel approach inspired by the computational model of the human eye. Our OSCNN leverages free-space optics to enhance power efficiency and processing speed while maintaining high accuracy in pattern detection. Specifically, our model employs Gabor filters in the initial layer for effective feature extraction, and utilizes optical components such as Intensity-to-Delay conversion and a synchronizer, designed using readily available optical components. The OSCNN was rigorously tested on benchmark datasets, including MNIST, ETH80, and Caltech, demonstrating competitive classification accuracy. Our comparative analysis reveals that the OSCNN consumes only 1.6 W of power with a processing speed of 2.44 ms, significantly outperforming conventional electronic CNNs on GPUs, which typically consume 150-300 W with processing speeds of 1-5 ms, and competing favorably with other free-space ONNs. Our contributions include addressing several key challenges in optical neural network implementation. To ensure nanometer-scale precision in component alignment, we propose advanced micro-positioning systems and active feedback control mechanisms. To enhance signal integrity, we employ high-quality optical components, error correction algorithms, adaptive optics, and noise-resistant coding schemes. The integration of optical and electronic components is optimized through the design of high-speed opto-electronic converters, custom integrated circuits, and advanced packaging techniques. Moreover, we utilize highly efficient, compact semiconductor laser diodes and develop novel cooling strategies to minimize power consumption and footprint.

摘要

神经形态工程已成为开发受大脑启发的计算系统的一条有前途的途径。然而,传统的基于电子人工智能的处理器经常遇到与处理速度和热耗散相关的挑战。作为一种替代方案,已经提出了这种处理器的光学实现方式,利用光的内在信息处理能力。在光学神经形态工程领域探索的各种光学神经网络(ONN)中,脉冲神经网络(SNN)在模拟人类大脑的计算原理方面取得了显著成功。光学SNN基于事件的脉冲特性在低功耗运行、速度、时间处理、模拟计算和硬件效率方面具有其他ONN类型难以或无法比拟的能力。在这项工作中,我们介绍了开创性的自由空间光学深度脉冲卷积神经网络(OSCNN),这是一种受人类眼睛计算模型启发的新方法。我们的OSCNN利用自由空间光学来提高功率效率和处理速度,同时在模式检测中保持高精度。具体而言,我们的模型在初始层采用Gabor滤波器进行有效的特征提取,并利用强度到延迟转换和同步器等光学组件,这些组件使用现成的光学组件设计。OSCNN在包括MNIST、ETH80和Caltech在内的基准数据集上进行了严格测试,展示了具有竞争力的分类准确率。我们的比较分析表明,OSCNN仅消耗1.6瓦的功率,处理速度为2.44毫秒,显著优于GPU上的传统电子CNN,后者通常消耗150 - 300瓦的功率,处理速度为1 - 5毫秒,并且与其他自由空间ONN相比具有优势。我们的贡献包括解决光学神经网络实现中的几个关键挑战。为了确保组件对准的纳米级精度,我们提出了先进的微定位系统和有源反馈控制机制。为了提高信号完整性,我们采用高质量的光学组件、纠错算法、自适应光学和抗噪声编码方案。通过设计高速光电转换器、定制集成电路和先进的封装技术,优化了光学和电子组件的集成。此外,我们利用高效、紧凑的半导体激光二极管并开发新颖的冷却策略,以最小化功耗和占地面积。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cc6/11684708/e135e84f3d15/pone.0313547.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验