Liepman Aaron H, Nairn C Joseph, Willats William G T, Sørensen Iben, Roberts Alison W, Keegstra Kenneth
Biology Department, Eastern Michigan University, Ypsilanti, Michigan 48197, USA.
Plant Physiol. 2007 Apr;143(4):1881-93. doi: 10.1104/pp.106.093989. Epub 2007 Feb 16.
Mannan polysaccharides are widespread among plants, where they serve as structural elements in cell walls, as carbohydrate reserves, and potentially perform other important functions. Previous work has demonstrated that members of the cellulose synthase-like A (CslA) family of glycosyltransferases from Arabidopsis (Arabidopsis thaliana), guar (Cyamopsis tetragonolobus), and Populus trichocarpa catalyze beta-1,4-mannan and glucomannan synthase reactions in vitro. Mannan polysaccharides and homologs of CslA genes appear to be present in all lineages of land plants analyzed to date. In many plants, the CslA genes are members of extended multigene families; however, it is not known whether all CslA proteins are glucomannan synthases. CslA proteins from diverse land plant species, including representatives of the mono- and dicotyledonous angiosperms, gymnosperms, and bryophytes, were produced in insect cells, and each CslA protein catalyzed mannan and glucomannan synthase reactions in vitro. Microarray mining and quantitative real-time reverse transcription-polymerase chain reaction analysis demonstrated that transcripts of Arabidopsis and loblolly pine (Pinus taeda) CslA genes display tissue-specific expression patterns in vegetative and floral tissues. Glycan microarray analysis of Arabidopsis indicated that mannans are present throughout the plant and are especially abundant in flowers, siliques, and stems. Mannans are also present in chloronemal and caulonemal filaments of Physcomitrella patens, where they are prevalent at cell junctions and in buds. Taken together, these results demonstrate that members of the CslA gene family from diverse plant species encode glucomannan synthases and support the hypothesis that mannans function in metabolic networks devoted to other cellular processes in addition to cell wall structure and carbohydrate storage.
甘露聚糖广泛存在于植物中,它们在植物细胞壁中作为结构成分,作为碳水化合物储备,并可能执行其他重要功能。先前的研究表明,来自拟南芥(Arabidopsis thaliana)、瓜尔豆(Cyamopsis tetragonolobus)和毛果杨(Populus trichocarpa)的纤维素合酶样A(CslA)家族糖基转移酶成员在体外催化β-1,4-甘露聚糖和葡甘露聚糖合酶反应。甘露聚糖多糖和CslA基因的同源物似乎存在于迄今为止分析的所有陆地植物谱系中。在许多植物中,CslA基因是扩展多基因家族的成员;然而,尚不清楚所有CslA蛋白是否都是葡甘露聚糖合酶。来自不同陆地植物物种的CslA蛋白,包括单子叶和双子叶被子植物、裸子植物和苔藓植物的代表,在昆虫细胞中产生,并且每个CslA蛋白在体外催化甘露聚糖和葡甘露聚糖合酶反应。微阵列挖掘和定量实时逆转录-聚合酶链反应分析表明,拟南芥和火炬松(Pinus taeda)CslA基因的转录本在营养组织和花组织中呈现组织特异性表达模式。拟南芥的聚糖微阵列分析表明,甘露聚糖存在于整个植物中,在花、角果和茎中尤其丰富。甘露聚糖也存在于小立碗藓(Physcomitrella patens)的绿丝体和轴丝体中,在细胞连接处和芽中普遍存在。综上所述,这些结果表明,来自不同植物物种的CslA基因家族成员编码葡甘露聚糖合酶,并支持以下假设:除了细胞壁结构和碳水化合物储存外,甘露聚糖还在致力于其他细胞过程的代谢网络中发挥作用。