Department of Biochemistry and The Leverhulme Trust Centre for Natural Material Innovation, University of Cambridge, Cambridge CB2 1QW, United Kingdom.
Institute of Chemistry, University of Campinas-UNICAMP, Campinas SP 13084-862, Brazil.
Plant Physiol. 2018 Nov;178(3):1011-1026. doi: 10.1104/pp.18.00709. Epub 2018 Sep 5.
The interaction between mannan polysaccharides and cellulose microfibrils contributes to cell wall properties in some vascular plants, but the molecular arrangement of mannan in the cell wall and the nature of the molecular bonding between mannan and cellulose remain unknown. Previous studies have shown that mannan is important in maintaining Arabidopsis () seed mucilage architecture, and that Cellulose Synthase-Like A2 (CSLA2) synthesizes a glucomannan backbone, which Mannan α-Galactosyl Transferase1 (MAGT1/GlycosylTransferase-Like6/Mucilage Related10) might decorate with single α-Gal branches. Here, we investigated the ratio and sequence of Man and Glc and the arrangement of Gal residues in Arabidopsis mucilage mannan using enzyme sequential digestion, carbohydrate gel electrophoresis, and mass spectrometry. We found that seed mucilage galactoglucomannan has a backbone consisting of the repeating disaccharide [4)-β-Glc-(1,4)-β-Man-(1,], and most of the Man residues in the backbone are substituted by single α-1,6-Gal. CSLA2 is responsible for the synthesis of this patterned glucomannan backbone and MAGT1 catalyses the addition of α-Gal. In vitro activity assays revealed that MAGT1 transferred α-Gal from UDP-Gal only to Man residues within the CSLA2 patterned glucomannan backbone acceptor. These results indicate that CSLAs and galactosyltransferases are able to make precisely defined galactoglucomannan structures. Molecular dynamics simulations suggested this patterned galactoglucomannan is able to bind stably to some hydrophilic faces and to hydrophobic faces of cellulose microfibrils. A specialization of the biosynthetic machinery to make galactoglucomannan with a patterned structure may therefore regulate the mode of binding of this hemicellulose to cellulose fibrils.
甘露聚糖多糖与纤维素微纤丝之间的相互作用有助于一些维管植物细胞壁特性的形成,但细胞壁中甘露聚糖的分子排列以及甘露聚糖与纤维素之间的分子键合性质仍不清楚。先前的研究表明甘露聚糖在维持拟南芥()种子黏液质结构中起重要作用,并且纤维素合酶类似物 A2(CSLA2)合成了一个葡甘露聚糖主链,甘露聚糖α-半乳糖基转移酶 1(MAGT1/糖基转移酶样 6/黏液质相关 10)可能用单个α-Gal 侧链来修饰。在这里,我们使用酶顺序消化、碳水化合物凝胶电泳和质谱法研究了拟南芥黏液质甘露聚糖中的 Man 和 Glc 的比例和序列以及 Gal 残基的排列方式。我们发现,种子黏液质半乳糖葡甘露聚糖的主链由重复二糖[4)-β-Glc-(1,4)-β-Man-(1,组成,主链中的大多数 Man 残基被单个α-1,6-Gal 取代。CSLA2 负责合成这种有图案的葡甘露聚糖主链,而 MAGT1 催化α-Gal 的添加。体外活性测定显示,MAGT1 仅从 UDP-Gal 将α-Gal 转移到 CSLA2 图案化葡甘露聚糖主链受体的 Man 残基上。这些结果表明,CSLAs 和半乳糖基转移酶能够精确地制造半乳糖葡甘露聚糖结构。分子动力学模拟表明,这种有图案的半乳糖葡甘露聚糖能够稳定地结合到纤维素微纤丝的一些亲水和疏水表面上。生物合成机制的专业化以制造具有图案结构的半乳糖葡甘露聚糖可能因此调节这种半纤维素与纤维素纤维结合的模式。