Suppr超能文献

In vivo fluorescent imaging of the mouse retina using adaptive optics.

作者信息

Biss David P, Sumorok Daniel, Burns Stephen A, Webb Robert H, Zhou Yaopeng, Bifano Thomas G, Côté Daniel, Veilleux Israel, Zamiri Parisa, Lin Charles P

机构信息

Schepens Eye Research Institute, Boston, Massachusetts 02114, USA.

出版信息

Opt Lett. 2007 Mar 15;32(6):659-61. doi: 10.1364/ol.32.000659.

Abstract

In vivo imaging of the mouse retina using visible and near infrared wavelengths does not achieve diffraction-limited resolution due to wavefront aberrations induced by the eye. Considering the pupil size and axial dimension of the eye, it is expected that unaberrated imaging of the retina would have a transverse resolution of 2 microm. Higher-order aberrations in retinal imaging of human can be compensated for by using adaptive optics. We demonstrate an adaptive optics system for in vivo imaging of fluorescent structures in the retina of a mouse, using a microelectromechanical system membrane mirror and a Shack-Hartmann wavefront sensor that detects fluorescent wavefront.

摘要

相似文献

1
In vivo fluorescent imaging of the mouse retina using adaptive optics.
Opt Lett. 2007 Mar 15;32(6):659-61. doi: 10.1364/ol.32.000659.
2
Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy.
J Biomed Opt. 2010 Jul-Aug;15(4):046022. doi: 10.1117/1.3475954.
3
High-accuracy wavefront control for retinal imaging with Adaptive-Influence-Matrix Adaptive Optics.
Opt Express. 2009 Oct 26;17(22):20167-77. doi: 10.1364/OE.17.020167.
4
Effect of aberrations and scatter on image resolution assessed by adaptive optics retinal section imaging.
J Opt Soc Am A Opt Image Sci Vis. 2007 May;24(5):1296-304. doi: 10.1364/josaa.24.001296.
5
Large-field-of-view imaging by multi-pupil adaptive optics.
Nat Methods. 2017 Jun;14(6):581-583. doi: 10.1038/nmeth.4290. Epub 2017 May 8.
6
High-speed adaptive optics for imaging of the living human eye.
Opt Express. 2015 Sep 7;23(18):23035-52. doi: 10.1364/OE.23.023035.
7
MEMS-based adaptive optics scanning laser ophthalmoscopy.
Opt Lett. 2006 May 1;31(9):1268-70. doi: 10.1364/ol.31.001268.
8
High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors.
J Opt Soc Am A Opt Image Sci Vis. 2007 May;24(5):1305-12. doi: 10.1364/josaa.24.001305.
9
Shack-Hartmann wavefront sensor with large dynamic range.
J Biomed Opt. 2010 Mar-Apr;15(2):026009. doi: 10.1117/1.3369810.
10
Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging.
J Opt Soc Am A Opt Image Sci Vis. 2007 May;24(5):1327-36. doi: 10.1364/josaa.24.001327.

引用本文的文献

1
Frequency-multiplexed aberration measurement for confocal microscopy.
Opt Express. 2024 Jul 29;32(16):28655-28665. doi: 10.1364/OE.525479.
2
Two-photon excitation fluorescence in ophthalmology: safety and improved imaging for functional diagnostics.
Front Med (Lausanne). 2024 Jan 3;10:1293640. doi: 10.3389/fmed.2023.1293640. eCollection 2023.
3
Introduction to the Feature Issue on Adaptive Optics for Biomedical Applications.
Biomed Opt Express. 2023 Mar 30;14(4):1772-1776. doi: 10.1364/BOE.488044. eCollection 2023 Apr 1.
5
Evolution of adaptive optics retinal imaging [Invited].
Biomed Opt Express. 2023 Feb 28;14(3):1307-1338. doi: 10.1364/BOE.485371. eCollection 2023 Mar 1.
6
From mouse to human: Accessing the biochemistry of vision in vivo by two-photon excitation.
Prog Retin Eye Res. 2023 Mar;93:101170. doi: 10.1016/j.preteyeres.2023.101170. Epub 2023 Feb 12.
7
Tools and Biomarkers for the Study of Retinal Ganglion Cell Degeneration.
Int J Mol Sci. 2022 Apr 13;23(8):4287. doi: 10.3390/ijms23084287.
8
Advances in multimodal imaging in ophthalmology.
Ther Adv Ophthalmol. 2021 Mar 19;13:25158414211002400. doi: 10.1177/25158414211002400. eCollection 2021 Jan-Dec.
9
Modeling and optimization of galvanometric point-scanning temporal dynamics.
Biomed Opt Express. 2021 Oct 5;12(11):6701-6716. doi: 10.1364/BOE.430586. eCollection 2021 Nov 1.
10
Imaging the dynamics of individual processes of microglia in the living retina .
Biomed Opt Express. 2021 Sep 10;12(10):6157-6183. doi: 10.1364/BOE.426157. eCollection 2021 Oct 1.

本文引用的文献

1
2
Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging.
Opt Express. 2006 Apr 17;14(8):3354-67. doi: 10.1364/oe.14.003354.
3
Adaptive optics scanning laser ophthalmoscopy.
Opt Express. 2002 May 6;10(9):405-12. doi: 10.1364/oe.10.000405.
4
Use of a microelectromechanical mirror for adaptive optics in the human eye.
Opt Lett. 2002 Sep 1;27(17):1537-9. doi: 10.1364/ol.27.001537.
5
Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices.
J Opt Soc Am A Opt Image Sci Vis. 2007 May;24(5):1250-65. doi: 10.1364/josaa.24.001250.
6
In vivo imaging and counting of rat retinal ganglion cells using a scanning laser ophthalmoscope.
Invest Ophthalmol Vis Sci. 2006 Jul;47(7):2943-50. doi: 10.1167/iovs.05-0708.
7
MEMS-based adaptive optics scanning laser ophthalmoscopy.
Opt Lett. 2006 May 1;31(9):1268-70. doi: 10.1364/ol.31.001268.
8
Optical aberrations in the mouse eye.
Vision Res. 2006 Aug;46(16):2546-53. doi: 10.1016/j.visres.2006.01.011. Epub 2006 Mar 3.
9
High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse.
Vision Res. 2006 Apr;46(8-9):1336-45. doi: 10.1016/j.visres.2005.09.037. Epub 2005 Nov 9.
10
Stroke amplifier for deformable mirrors.
Appl Opt. 2004 Oct 1;43(28):5330-3. doi: 10.1364/ao.43.005330.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验