Suppr超能文献

基于 Shack-Hartmann 波前传感器的多光子显微镜自适应光学系统。

Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy.

机构信息

Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, Massachusetts 02139, USA.

出版信息

J Biomed Opt. 2010 Jul-Aug;15(4):046022. doi: 10.1117/1.3475954.

Abstract

The imaging depth of two-photon excitation fluorescence microscopy is partly limited by the inhomogeneity of the refractive index in biological specimens. This inhomogeneity results in a distortion of the wavefront of the excitation light. This wavefront distortion results in image resolution degradation and lower signal level. Using an adaptive optics system consisting of a Shack-Hartmann wavefront sensor and a deformable mirror, wavefront distortion can be measured and corrected. With adaptive optics compensation, we demonstrate that the resolution and signal level can be better preserved at greater imaging depth in a variety of ex-vivo tissue specimens including mouse tongue muscle, heart muscle, and brain. However, for these highly scattering tissues, we find signal degradation due to scattering to be a more dominant factor than aberration.

摘要

双光子激发荧光显微镜的成像深度部分受到生物样本中折射率不均匀性的限制。这种不均匀性导致激发光的波前失真。这种波前失真导致图像分辨率下降和信号水平降低。使用由 Shack-Hartmann 波前传感器和变形镜组成的自适应光学系统,可以测量和校正波前失真。通过自适应光学补偿,我们证明在包括小鼠舌肌、心肌和脑在内的各种离体组织标本中,可以在更大的成像深度更好地保持分辨率和信号水平。然而,对于这些高度散射的组织,我们发现由于散射导致的信号降级比像差更为重要。

相似文献

1
Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy.
J Biomed Opt. 2010 Jul-Aug;15(4):046022. doi: 10.1117/1.3475954.
2
Adaptive optics multiphoton microscopy to study ex vivo ocular tissues.
J Biomed Opt. 2010 Nov-Dec;15(6):066004. doi: 10.1117/1.3505018.
3
In vivo fluorescent imaging of the mouse retina using adaptive optics.
Opt Lett. 2007 Mar 15;32(6):659-61. doi: 10.1364/ol.32.000659.
4
Adaptive optics improves multiphoton super-resolution imaging.
Nat Methods. 2017 Sep;14(9):869-872. doi: 10.1038/nmeth.4337. Epub 2017 Jun 19.
5
Two-photon excitation fluorescence microscopy with a high depth of field using an axicon.
Appl Opt. 2006 Dec 20;45(36):9246-52. doi: 10.1364/ao.45.009246.
6
Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy.
J Opt Soc Am A Opt Image Sci Vis. 2014 Jun 1;31(6):1337-47. doi: 10.1364/JOSAA.31.001337.
7
8
Wavefront optimized nonlinear microscopy of ex vivo human retinas.
J Biomed Opt. 2010 Mar-Apr;15(2):026007. doi: 10.1117/1.3369001.
9
Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.
Sci Rep. 2016 Sep 7;6:32223. doi: 10.1038/srep32223.
10
Shack-Hartmann wavefront sensing using interferometric focusing of light onto guide-stars.
Opt Express. 2013 Dec 16;21(25):31282-92. doi: 10.1364/OE.21.031282.

引用本文的文献

2
Acoustic-feedback wavefront-adapted photoacoustic microscopy.
Optica. 2024 Feb 20;11(2):214-221. doi: 10.1364/optica.511359. Epub 2024 Feb 5.
4
Deep learning-based adaptive optics for light sheet fluorescence microscopy.
Biomed Opt Express. 2023 May 25;14(6):2905-2919. doi: 10.1364/BOE.488995. eCollection 2023 Jun 1.
5
Adaptive optics for optical microscopy [Invited].
Biomed Opt Express. 2023 Mar 29;14(4):1732-1756. doi: 10.1364/BOE.479886. eCollection 2023 Apr 1.
6
Recent advances in optical imaging through deep tissue: imaging probes and techniques.
Biomater Res. 2022 Oct 22;26(1):57. doi: 10.1186/s40824-022-00303-4.
8
Quantitative analysis of illumination and detection corrections in adaptive light sheet fluorescence microscopy.
Biomed Opt Express. 2022 Apr 22;13(5):2960-2974. doi: 10.1364/BOE.454561. eCollection 2022 May 1.
9
Review of bio-optical imaging systems with a high space-bandwidth product.
Adv Photonics. 2021 Jul;3(4). doi: 10.1117/1.ap.3.4.044001. Epub 2021 Jun 26.
10
Adaptive photoacoustic computed tomography.
Photoacoustics. 2020 Nov 30;21:100223. doi: 10.1016/j.pacs.2020.100223. eCollection 2021 Mar.

本文引用的文献

2
Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues.
Nat Methods. 2010 Feb;7(2):141-7. doi: 10.1038/nmeth.1411. Epub 2009 Dec 27.
3
Adaptive harmonic generation microscopy of mammalian embryos.
Opt Lett. 2009 Oct 15;34(20):3154-6. doi: 10.1364/OL.34.003154.
4
Size of the detector in confocal imaging systems.
Opt Lett. 1987 Apr 1;12(4):227-9. doi: 10.1364/ol.12.000227.
5
Image-based adaptive optics for two-photon microscopy.
Opt Lett. 2009 Aug 15;34(16):2495-7. doi: 10.1364/ol.34.002495.
6
Adaptive optics for enhanced signal in CARS microscopy.
Opt Express. 2007 Dec 24;15(26):18209-19. doi: 10.1364/oe.15.018209.
7
Rejection of two-photon fluorescence background in thick tissue by differential aberration imaging.
Opt Express. 2006 Oct 30;14(22):10565-73. doi: 10.1364/oe.14.010565.
8
Practical implementation of adaptive optics in multiphoton microscopy.
Opt Express. 2003 May 19;11(10):1123-30. doi: 10.1364/oe.11.001123.
9
Adaptive optics scanning laser ophthalmoscopy.
Opt Express. 2002 May 6;10(9):405-12. doi: 10.1364/oe.10.000405.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验