Cubbidge Robert P, Hosking Sarah L, Hilton Emma J, Gibson Jonathan M
Ophthalmic Research Group, School of Life & Health Sciences, Aston University, Birmingham, UK.
Ophthalmic Physiol Opt. 2007 Mar;27(2):194-200. doi: 10.1111/j.1475-1313.2006.00468.x.
To determine whether curve-fitting analysis of the ranked segment distributions of topographic optic nerve head (ONH) parameters, derived using the Heidelberg Retina Tomograph (HRT), provide a more effective statistical descriptor to differentiate the normal from the glaucomatous ONH.
The sample comprised of 22 normal control subjects (mean age 66.9 years; S.D. 7.8) and 22 glaucoma patients (mean age 72.1 years; S.D. 6.9) confirmed by reproducible visual field defects on the Humphrey Field Analyser. Three 10 degree-images of the ONH were obtained using the HRT. The mean topography image was determined and the HRT software was used to calculate the rim volume, rim area to disc area ratio, normalised rim area to disc area ratio and retinal nerve fibre cross-sectional area for each patient at 10 degree-sectoral intervals. The values were ranked in descending order, and each ranked-segment curve of ordered values was fitted using the least squares method.
There was no difference in disc area between the groups. The group mean cup-disc area ratio was significantly lower in the normal group (0.204 +/- 0.16) compared with the glaucoma group (0.533 +/- 0.083) (p < 0.001). The visual field indices, mean deviation and corrected pattern S.D., were significantly greater (p < 0.001) in the glaucoma group (-9.09 dB +/- 3.3 and 7.91 +/- 3.4, respectively) compared with the normal group (-0.15 dB +/- 0.9 and 0.95 dB +/- 0.8, respectively). Univariate linear regression provided the best overall fit to the ranked segment data. The equation parameters of the regression line manually applied to the normalised rim area-disc area and the rim area-disc area ratio data, correctly classified 100% of normal subjects and glaucoma patients. In this study sample, the regression analysis of ranked segment parameters method was more effective than conventional ranked segment analysis, in which glaucoma patients were misclassified in approximately 50% of cases. Further investigation in larger samples will enable the calculation of confidence intervals for normality. These reference standards will then need to be investigated for an independent sample to fully validate the technique.
Using a curve-fitting approach to fit ranked segment curves retains information relating to the topographic nature of neural loss. Such methodology appears to overcome some of the deficiencies of conventional ranked segment analysis, and subject to validation in larger scale studies, may potentially be of clinical utility for detecting and monitoring glaucomatous damage.
确定使用海德堡视网膜断层扫描仪(HRT)得出的视盘参数的排序节段分布的曲线拟合分析,是否能提供更有效的统计描述符来区分正常和青光眼视盘。
样本包括22名正常对照者(平均年龄66.9岁;标准差7.8)和22名青光眼患者(平均年龄72.1岁;标准差6.9),这些患者经Humphrey视野分析仪上可重复的视野缺损确诊。使用HRT获取视盘的三张10度图像。确定平均地形图图像,并使用HRT软件以10度扇形间隔计算每位患者的边缘体积、边缘面积与视盘面积之比、标准化边缘面积与视盘面积之比以及视网膜神经纤维横截面积。将这些值按降序排列,并使用最小二乘法对有序值的每条排序节段曲线进行拟合。
两组之间的视盘面积无差异。正常组的平均杯盘面积比(0.204±0.16)显著低于青光眼组(0.533±0.083)(p<0.001)。青光眼组的视野指标平均偏差和校正模式标准差(分别为-9.09dB±3.3和7.91±3.4)与正常组(分别为-0.15dB±0.9和0.95dB±0.8)相比显著更高(p<0.001)。单变量线性回归对排序节段数据提供了最佳的总体拟合。手动应用于标准化边缘面积-视盘面积和边缘面积-视盘面积比数据的回归线方程参数,正确分类了100%的正常受试者和青光眼患者。在本研究样本中,排序节段参数的回归分析方法比传统的排序节段分析更有效,在传统分析中,约50%的青光眼患者被错误分类。对更大样本的进一步研究将能够计算正常性的置信区间。然后需要对独立样本研究这些参考标准,以充分验证该技术。
使用曲线拟合方法来拟合排序节段曲线保留了与神经损失的地形性质相关的信息。这种方法似乎克服了传统排序节段分析的一些缺陷,并且在大规模研究中经过验证后,可能在检测和监测青光眼损害方面具有临床实用性。