Senear Donald F, Tretyachenko-Ladokhina Vira, Opel Michael L, Aeling Kimberly A, Hatfield G Wesley, Franklin Laurie M, Darlington Reuben C, Alexander Ross J B
Department of Molecular Biology and Biochemistry, College of Medicine, University of California, Irvine, CA 92697, USA.
Nucleic Acids Res. 2007;35(6):1761-72. doi: 10.1093/nar/gkl1122. Epub 2007 Feb 25.
E. coli Integration host factor (IHF) condenses the bacterial nucleoid by wrapping DNA. Previously, we showed that DNA flexibility compensates for structural characteristics of the four consensus recognition elements associated with specific binding (Aeling et al., J. Biol. Chem. 281, 39236-39248, 2006). If elements are missing, high-affinity binding occurs only if DNA deformation energy is low. In contrast, if all elements are present, net binding energy is unaffected by deformation energy. We tested two hypotheses for this observation: in complexes containing all elements, (1) stiff DNA sequences are less bent upon binding IHF than flexible ones; or (2) DNA sequences with differing flexibility have interactions with IHF that compensate for unfavorable deformation energy. Time-resolved Förster resonance energy transfer (FRET) shows that global topologies are indistinguishable for three complexes with oligonucleotides of different flexibility. However, pressure perturbation shows that the volume change upon binding is smaller with increasing flexibility. We interpret these results in the context of Record and coworker's model for IHF binding (J. Mol. Biol. 310, 379-401, 2001). We propose that the volume changes reflect differences in hydration that arise from structural variation at IHF-DNA interfaces while the resulting energetic compensation maintains the same net binding energy.
大肠杆菌整合宿主因子(IHF)通过包裹DNA使细菌类核浓缩。此前,我们发现DNA柔韧性可补偿与特异性结合相关的四个共有识别元件的结构特征(Aeling等人,《生物化学杂志》281卷,39236 - 39248页,2006年)。如果元件缺失,只有当DNA变形能较低时才会发生高亲和力结合。相反,如果所有元件都存在,净结合能不受变形能影响。我们针对这一观察结果测试了两种假说:在包含所有元件的复合物中,(1)刚性DNA序列在结合IHF时比柔性序列弯曲程度小;或者(2)具有不同柔韧性的DNA序列与IHF的相互作用可补偿不利的变形能。时间分辨荧光共振能量转移(FRET)表明,对于三种含有不同柔韧性寡核苷酸的复合物,整体拓扑结构无法区分。然而,压力扰动表明,随着柔韧性增加,结合时的体积变化更小。我们结合Record及其同事关于IHF结合的模型(《分子生物学杂志》310卷,379 - 401页,2001年)来解释这些结果。我们提出,体积变化反映了IHF - DNA界面结构变化引起的水合差异,而由此产生的能量补偿维持了相同的净结合能。