Brun Yseult F, Dennis Carly G, Greco William R, Bernacki Ralph J, Pera Paula J, Bushey Jennifer J, Youn Richard C, White Donald B, Segal Brahm H
Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
Antimicrob Agents Chemother. 2007 May;51(5):1804-12. doi: 10.1128/AAC.01007-06. Epub 2007 Feb 26.
Response surface methods for the study of multiple-agent interaction allow one to model all of the information present in full concentration-effect data sets and to visualize and quantify local regions of synergy, additivity, and antagonism. In randomized wells of 96-well plates, Aspergillus fumigatus was exposed to various combinations of amphotericin B, micafungin, and nikkomycin Z. The experimental design was comprised of 91 different fixed-ratio mixtures, all performed in quintuplicate. After 24 h of drug exposure, drug effect on fungal viability was assessed using the tetrazolium salt 2,3-bis {2-methoxy-4-nitro-5-[(sulfenylamino) carbonyl]-2H-tetrazolium-hydroxide} (XTT) assay. First, we modeled each fixed-ratio combination alone using the four-parameter Hill concentration-effect model. Then, we modeled each parameter, including the 50% inhibitory concentration (IC(50)) effect, versus the proportion of each agent using constrained polynomials. Finally, we modeled the three-agent response surface overall. The overall four-dimensional response surface was complex, but it can be explained in detail both analytically and graphically. The grand model that fit the best included complex polynomial equations for the slope parameter m and the combination index (equivalent to the IC(50) for a fixed-ratio concentration, but with concentrations normalized by the respective IC(50)s of the drugs alone). There was a large region of synergy, mostly at the nikkomycin Z/micafungin edge of the ternary plots for equal normalized proportions of each drug and extending into the center of the plots. Applying this response surface method to a huge data set for a three-antifungal-agent combination is novel. This new paradigm has the potential to significantly advance the field of combination antifungal pharmacology.
用于研究多药相互作用的响应面方法能够对全浓度效应数据集中的所有信息进行建模,并可视化和量化协同、相加和拮抗的局部区域。在96孔板的随机孔中,将烟曲霉暴露于两性霉素B、米卡芬净和尼可霉素Z的各种组合中。实验设计包括91种不同的固定比例混合物,均重复进行五次。药物暴露24小时后,使用四唑盐2,3-双{2-甲氧基-4-硝基-5-[(亚磺酰氨基)羰基]-2H-四唑氢氧化物}(XTT)试验评估药物对真菌活力的影响。首先,我们使用四参数希尔浓度效应模型单独对每种固定比例组合进行建模。然后,我们使用约束多项式对每个参数进行建模,包括50%抑制浓度(IC(50))效应与每种药物比例的关系。最后,我们对三药响应面进行整体建模。整体的四维响应面很复杂,但可以通过分析和图形详细解释。拟合效果最佳的总体模型包括针对斜率参数m和组合指数的复杂多项式方程(组合指数相当于固定比例浓度下的IC(50),但浓度由各药物单独的IC(50)进行归一化)。存在一个较大的协同区域,主要位于三元图中尼可霉素Z/米卡芬净的边缘,对于每种药物相等的归一化比例,并延伸到图的中心。将这种响应面方法应用于三抗真菌药物组合的海量数据集是新颖的。这种新范式有可能显著推动联合抗真菌药理学领域的发展。