Suppr超能文献

冰川冰中的微生物生命及其对生命起源于寒冷环境的意义。

Microbial life in glacial ice and implications for a cold origin of life.

作者信息

Price P Buford

机构信息

Physics Department, University of California, Berkeley, CA 94720, USA.

出版信息

FEMS Microbiol Ecol. 2007 Feb;59(2):217-31. doi: 10.1111/j.1574-6941.2006.00234.x.

Abstract

Application of physical and chemical concepts, complemented by studies of prokaryotes in ice cores and permafrost, has led to the present understanding of how microorganisms can metabolize at subfreezing temperatures on Earth and possibly on Mars and other cold planetary bodies. The habitats for life at subfreezing temperatures benefit from two unusual properties of ice. First, almost all ionic impurities are insoluble in the crystal structure of ice, which leads to a network of micron-diameter veins in which microorganisms may utilize ions for metabolism. Second, ice in contact with mineral surfaces develops a nanometre-thick film of unfrozen water that provides a second habitat that may allow microorganisms to extract energy from redox reactions with ions in the water film or ions in the mineral structure. On the early Earth and on icy planets, prebiotic molecules in veins in ice may have polymerized to RNA and polypeptides by virtue of the low water activity and high rate of encounter with each other in nearly one-dimensional trajectories in the veins. Prebiotic molecules may also have utilized grain surfaces to increase the rate of encounter and to exploit other physicochemical features of the surfaces.

摘要

物理和化学概念的应用,辅以对冰芯和永久冻土中原核生物的研究,使我们目前了解了微生物如何在地球的亚冰点温度下进行代谢,以及在火星和其他寒冷行星体上可能的代谢方式。亚冰点温度下的生命栖息地得益于冰的两种特殊性质。首先,几乎所有离子杂质都不溶于冰的晶体结构,这导致形成了微米级直径的脉管网络,微生物可在其中利用离子进行代谢。其次,与矿物表面接触的冰会形成一层纳米厚的未冻水膜,这提供了第二个栖息地,可能使微生物能够从与水膜中的离子或矿物结构中的离子发生的氧化还原反应中提取能量。在早期地球和冰冻行星上,冰脉中的益生元分子可能由于水活性低以及在脉管中近乎一维的轨迹中彼此相遇的速率高,而聚合成了RNA和多肽。益生元分子也可能利用颗粒表面来提高相遇速率,并利用表面的其他物理化学特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验