Suppr超能文献

微生物强化四氯乙烯(PCE)溶解的实验评估与数学建模

Experimental evaluation and mathematical modeling of microbially enhanced tetrachloroethene (PCE) dissolution.

作者信息

Amos Benjamin K, Christ John A, Abriola Linda M, Pennell Kurt D, Löffler Frank E

机构信息

School of Civil and Environmental Engineering and School of Biology, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0512, USA.

出版信息

Environ Sci Technol. 2007 Feb 1;41(3):963-70. doi: 10.1021/es061438n.

Abstract

Experiments to assess metabolic reductive dechlorination (chlororespiration) at high concentration levels consistent with the presence of free-phase tetrachloroethene (PCE) were performed using three PCE-to-cis-1,2-dichloroethene (cis-DCE) dechlorinating pure cultures (Sulfurospirillum multivorans, Desulfuromonas michiganensis strain BB1, and Geobacter lovleyi strain SZ) and Desulfitobacterium sp. strain Viet1, a PCE-to-trichloroethene (TCE) dechlorinating isolate. Despite recent evidence suggesting bacterial PCE-to-cis-DCE dechlorination occurs at or near PCE saturation (0.9-1.2 mM), all cultures tested ceased dechlorinating at approximately 0.54 mM PCE. In the presence of PCE dense nonaqueous phase liquid (DNAPL), strains BB1 and SZ initially dechlorinated, but TCE and cis-DCE production ceased when aqueous PCE concentrations reached inhibitory levels. For S. multivorans, dechlorination proceeded at a rate sufficient to maintain PCE concentrations below inhibitory levels, resulting in continuous cis-DCE production and complete dissolution of the PCE DNAPL. A novel mathematical model, which accounts for loss of dechlorinating activity at inhibitory PCE concentrations, was developed to simultaneously describe PCE-DNAPL dissolution and reductive dechlorination kinetics. The model predicted that conditions corresponding to a bioavailability number (Bn) less than 1.25 x 10(-2) will lead to dissolution enhancement with the tested cultures, while conditions corresponding to a Bn greater than this threshold value can result in accumulation of PCE to inhibitory dissolved-phase levels, limiting PCE transformation and dissolution enhancement. These results suggest that microorganisms incapable of dechlorinating at high PCE concentrations can enhance the dissolution and transformation of PCE from free-phase DNAPL.

摘要

使用三种将四氯乙烯(PCE)脱氯生成顺式1,2 - 二氯乙烯(cis - DCE)的纯培养物(多食硫螺旋菌、密歇根脱硫单胞菌菌株BB1和洛氏地杆菌菌株SZ)以及一株将PCE脱氯生成三氯乙烯(TCE)的脱氯脱硫杆菌属菌株Viet1,进行了与游离相PCE存在时相一致的高浓度水平下代谢性还原脱氯(氯呼吸作用)实验。尽管最近有证据表明细菌将PCE脱氯生成cis - DCE的过程发生在PCE饱和度(0.9 - 1.2 mM)或接近该饱和度时,但所有测试培养物在约0.54 mM PCE时均停止脱氯。在存在PCE致密非水相液体(DNAPL)的情况下,菌株BB1和SZ最初进行脱氯,但当水相PCE浓度达到抑制水平时,TCE和cis - DCE的产生停止。对于多食硫螺旋菌,脱氯以足以将PCE浓度维持在抑制水平以下的速率进行,导致cis - DCE持续产生以及PCE DNAPL完全溶解。开发了一个新的数学模型,该模型考虑了在抑制性PCE浓度下脱氯活性的损失,以同时描述PCE - DNAPL溶解和还原脱氯动力学。该模型预测,与生物可利用性数值(Bn)小于1.25×10⁻²相对应的条件将导致测试培养物的溶解增强,而与Bn大于该阈值相对应的条件可能导致PCE积累至抑制性溶解相水平,限制PCE的转化和溶解增强。这些结果表明,在高PCE浓度下无法进行脱氯的微生物可以增强游离相DNAPL中PCE的溶解和转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验