Suppr超能文献

微生物强化的 PCE 溶解和还原脱氯作用:混合培养物的模型验证和敏感性分析。

Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: model validation and sensitivity analysis.

机构信息

Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.

出版信息

J Contam Hydrol. 2013 Aug;151:117-30. doi: 10.1016/j.jconhyd.2013.05.005. Epub 2013 May 29.

Abstract

Reductive dechlorination catalyzed by organohalide-respiring bacteria is often considered for remediation of non-aqueous phase liquid (NAPL) source zones due to cost savings, ease of implementation, regulatory acceptance, and sustainability. Despite knowledge of the key dechlorinators, an understanding of the processes and factors that control NAPL dissolution rates and detoxification (i.e., ethene formation) is lacking. A recent column study demonstrated a 5-fold cumulative enhancement in tetrachloroethene (PCE) dissolution and ethene formation (Amos et al., 2009). Spatial and temporal monitoring of key geochemical and microbial (i.e., Geobacter lovleyi and Dehalococcoides mccartyi strains) parameters in the column generated a data set used herein as the basis for refinement and testing of a multiphase, compositional transport model. The refined model is capable of simulating the reactive transport of multiple chemical constituents produced and consumed by organohalide-respiring bacteria and accounts for substrate limitations and competitive inhibition. Parameter estimation techniques were used to optimize the values of sensitive microbial kinetic parameters, including maximum utilization rates, biomass yield coefficients, and endogenous decay rates. Comparison and calibration of model simulations with the experimental data demonstrate that the model is able to accurately reproduce measured effluent concentrations, while delineating trends in dechlorinator growth and reductive dechlorination kinetics along the column. Sensitivity analyses performed on the optimized model parameters indicate that the rates of PCE and cis-1,2-dichloroethene (cis-DCE) transformation and Dehalococcoides growth govern bioenhanced dissolution, as long as electron donor (i.e., hydrogen flux) is not limiting. Dissolution enhancements were shown to be independent of cis-DCE accumulation; however, accumulation of cis-DCE, as well as column length and flow rate (i.e., column residence time), strongly influenced the extent of reductive dechlorination. When cis-DCE inhibition was neglected, the model over-predicted ethene production ten-fold, while reductions in residence time (i.e., a two-fold decrease in column length or two-fold increase in flow rate) resulted in a more than 70% decline in ethene production. These results suggest that spatial and temporal variations in microbial community composition and activity must be understood to model, predict, and manage bioenhanced NAPL dissolution.

摘要

由于成本节约、易于实施、监管部门认可和可持续性等原因,有机卤化物呼吸细菌催化的还原脱氯通常被认为是修复非水相液体 (NAPL) 源区的一种方法。尽管人们已经了解了关键的脱氯剂,但对于控制 NAPL 溶解速率和解毒(即生成乙烯)的过程和因素还缺乏了解。最近的柱实验证明,四氯乙烯 (PCE) 的溶解和乙烯生成(Amos 等人,2009 年)提高了 5 倍。在柱中对关键地球化学和微生物(即 Geobacter lovleyi 和 Dehalococcoides mccartyi 菌株)参数进行的时空监测产生了一组数据,这些数据是本文中对多相、组成传输模型进行细化和测试的基础。细化后的模型能够模拟由有机卤化物呼吸细菌产生和消耗的多种化学物质的反应性传输,并考虑了基质限制和竞争抑制。参数估计技术用于优化敏感微生物动力学参数的值,包括最大利用速率、生物量产率系数和内源性衰减速率。模型模拟与实验数据的比较和校准表明,该模型能够准确地再现测量的流出物浓度,同时描绘了沿柱的脱氯剂生长和还原脱氯动力学的趋势。对优化后的模型参数进行的敏感性分析表明,只要电子供体(即氢通量)不受限制,PCE 和顺式-1,2-二氯乙烷 (cis-DCE) 转化和 Dehalococcoides 生长的速率就会控制生物增强的溶解。已经表明,溶解增强与 cis-DCE 积累无关;然而,cis-DCE 的积累以及柱的长度和流速(即柱停留时间)强烈影响还原脱氯的程度。当忽略 cis-DCE 抑制时,模型预测的乙烯产量高出十倍,而停留时间的减少(即柱长度减少两倍或流速增加两倍)导致乙烯产量减少 70%以上。这些结果表明,必须了解微生物群落组成和活性的时空变化,才能对生物增强的 NAPL 溶解进行建模、预测和管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验