Wen Li-Lian, Zhang Yin, Pan Ya-Wei, Wu Wen-Qi, Meng Shao-Hua, Zhou Chen, Tang Youneng, Zheng Ping, Zhao He-Ping
MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310-6046, USA.
Environ Sci Pollut Res Int. 2015 Dec;22(23):19039-47. doi: 10.1007/s11356-015-5117-z. Epub 2015 Aug 2.
We evaluated the effects of methanogens and acetogens on the function and structure of microbial communities doing reductive dechlorination of trichloroethene (TCE) by adding four distinct electron donors: lactate, a fermentable organic; acetate, a non-fermentable organic; methanol, a fermentable 1-C (carbon) organic; and hydrogen gas (H2), the direct electron donor for reductive dechlorination by Dehalococcoides. The fermentable electron donors had faster dechlorination rates, more complete dechlorination, and higher bacterial abundances than the non-fermentable electron donors during short-term tests. Phylotypes of Dehalococcoides were relatively abundant (≥9%) for the cultures fed with fermentable electron donors but accounted for only ~1-2% of the reads for the cultures fed by the non-fermentable electron donors. Routing electrons to methanogenesis and a low ratio of Dehalococcoides/methanogenesis (Dhc/mcrA) were associated with slow and incomplete reductive dechlorination with methanol and H2. When fermentable substrates were applied as electron donors, a Dhc/mcrA ratio ≥6.4 was essential to achieve fast and complete dechlorination of TCE to ethene. When methanogenesis was suppressed using 2-bromoethanesulfonate (BES), achieving complete dechlorination of TCE to ethane required a minimum abundance of the mcrA gene. Methanobacterium appeared to be important for maintaining a high dechlorination rate, probably by providing Dehalococcoides with cofactors other than vitamin B12. Furthermore, the presence of homoacetogens also was important to maintain a high dechlorination rate, because they provided acetate as Dehalococcoides's obligatory carbon source and possibly cofactors.
我们通过添加四种不同的电子供体来评估产甲烷菌和产乙酸菌对进行三氯乙烯(TCE)还原脱氯的微生物群落的功能和结构的影响:乳酸盐,一种可发酵有机物;乙酸盐,一种不可发酵有机物;甲醇,一种可发酵的含1个碳的有机物;以及氢气(H₂),脱卤球菌进行还原脱氯的直接电子供体。在短期试验中,可发酵电子供体比不可发酵电子供体具有更快的脱氯速率、更完全的脱氯以及更高的细菌丰度。对于以可发酵电子供体为食的培养物,脱卤球菌的系统发育型相对丰富(≥9%),但在以不可发酵电子供体为食的培养物的读数中仅占约1-2%。将电子导向产甲烷作用以及脱卤球菌/产甲烷作用的低比率(Dhc/mcrA)与使用甲醇和H₂进行的缓慢且不完全的还原脱氯有关。当使用可发酵底物作为电子供体时,Dhc/mcrA比率≥6.4对于实现TCE快速完全脱氯为乙烯至关重要。当使用2-溴乙烷磺酸盐(BES)抑制产甲烷作用时,实现TCE完全脱氯为乙烷需要最低丰度的mcrA基因。甲烷杆菌似乎对于维持高脱氯速率很重要,可能是通过为脱卤球菌提供除维生素B12之外的辅因子。此外,产乙酸菌的存在对于维持高脱氯速率也很重要,因为它们提供乙酸盐作为脱卤球菌的必需碳源以及可能的辅因子。