Clarke John, Hatridge Michael, Mössle Michael
Department of Physics, University of California, Berkeley, California 94720-7300, USA.
Annu Rev Biomed Eng. 2007;9:389-413. doi: 10.1146/annurev.bioeng.9.060906.152010.
The use of very low noise magnetometers based on Superconducting QUantum Interference Devices (SQUIDs) enables nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) in microtesla magnetic fields. An untuned superconducting flux transformer coupled to a SQUID achieves a magnetic field noise of 10(-15) T Hz(-1/2). The frequency-independent response of this magnetometer combined with prepolarization of the nuclear spins yields an NMR signal that is independent of the Larmor frequency omega0. An MRI system operating in a field of 132 microT, corresponding to a proton frequency of 5.6 kHz, achieves an in-plane resolution of 0.7 x 0.7 mm2 in phantoms. Measurements of the longitudinal relaxation time T1 in different concentrations of agarose gel over five decades of frequency reveal much greater T1-differentiation at fields below a few millitesla. Microtesla MRI has the potential to image tumors with substantially greater T1-weighted contrast than is achievable in high fields in the absence of a contrast agent.
基于超导量子干涉器件(SQUIDs)的极低噪声磁力计的使用,使得在微特斯拉磁场中进行核磁共振(NMR)和磁共振成像(MRI)成为可能。一个与SQUID耦合的未调谐超导磁通变压器实现了10^(-15) T Hz^(-1/2)的磁场噪声。这种磁力计与核自旋的预极化相结合的与频率无关的响应,产生了一个与拉莫尔频率ω0无关的NMR信号。一个在132微特斯拉磁场中运行的MRI系统,对应于5.6千赫兹的质子频率,在体模中实现了0.7×0.7平方毫米的平面分辨率。在五个数量级的频率范围内,对不同浓度琼脂糖凝胶中的纵向弛豫时间T1进行测量,发现在几毫特斯拉以下的磁场中,T1差异要大得多。微特斯拉MRI有可能以比在高场中(无造影剂时)所能实现的更大的T1加权对比度对肿瘤进行成像。