Suppr超能文献

优化超低磁场和高磁场磁共振图像的三维配准。

Optimized 3D co-registration of ultra-low-field and high-field magnetic resonance images.

机构信息

Department of Neuroscience, Imaging and Clinical Science, Chieti, Italy.

Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti and Pescara, Chieti, Italy.

出版信息

PLoS One. 2018 Mar 6;13(3):e0193890. doi: 10.1371/journal.pone.0193890. eCollection 2018.

Abstract

The prototypes of ultra-low-field (ULF) MRI scanners developed in recent years represent new, innovative, cost-effective and safer systems, which are suitable to be integrated in multi-modal (Magnetoencephalography and MRI) devices. Integrated ULF-MRI and MEG scanners could represent an ideal solution to obtain functional (MEG) and anatomical (ULF MRI) information in the same environment, without errors that may limit source reconstruction accuracy. However, the low resolution and signal-to-noise ratio (SNR) of ULF images, as well as their limited coverage, do not generally allow for the construction of an accurate individual volume conductor model suitable for MEG localization. Thus, for practical usage, a high-field (HF) MRI image is also acquired, and the HF-MRI images are co-registered to the ULF-MRI ones. We address here this issue through an optimized pipeline (SWIM-Sliding WIndow grouping supporting Mutual information). The co-registration is performed by an affine transformation, the parameters of which are estimated using Normalized Mutual Information as the cost function, and Adaptive Simulated Annealing as the minimization algorithm. The sub-voxel resolution of the ULF images is handled by a sliding-window approach applying multiple grouping strategies to down-sample HF MRI to the ULF-MRI resolution. The pipeline has been tested on phantom and real data from different ULF-MRI devices, and comparison with well-known toolboxes for fMRI analysis has been performed. Our pipeline always outperformed the fMRI toolboxes (FSL and SPM). The HF-ULF MRI co-registration obtained by means of our pipeline could lead to an effective integration of ULF MRI with MEG, with the aim of improving localization accuracy, but also to help exploit ULF MRI in tumor imaging.

摘要

近年来开发的超低场 (ULF) MRI 扫描仪原型代表了新的、创新的、具有成本效益的和更安全的系统,它们适合集成到多模态 (脑磁图和 MRI) 设备中。集成 ULF-MRI 和 MEG 扫描仪可以提供在相同环境中获得功能 (MEG) 和解剖 (ULF MRI) 信息的理想解决方案,而不会出现限制源重建准确性的误差。然而,ULF 图像的低分辨率和信噪比 (SNR) 以及其有限的覆盖范围通常不允许构建适合 MEG 定位的精确个体容积导体模型。因此,为了实际使用,还采集了高场 (HF) MRI 图像,并将 HF-MRI 图像与 ULF-MRI 图像进行配准。我们通过优化的流水线 (SWIM-Sliding WIndow grouping supporting Mutual information) 解决了这个问题。配准是通过仿射变换来完成的,仿射变换的参数是使用归一化互信息作为代价函数、自适应模拟退火作为最小化算法来估计的。通过应用多种分组策略对 HF MRI 进行下采样以达到 ULF-MRI 分辨率的滑动窗口方法来处理 ULF 图像的亚像素分辨率。该流水线已经在不同的 ULF-MRI 设备的体模和真实数据上进行了测试,并与用于 fMRI 分析的知名工具箱进行了比较。我们的流水线始终优于 fMRI 工具箱 (FSL 和 SPM)。通过我们的流水线获得的 HF-ULF MRI 配准可以有效地将 ULF MRI 与 MEG 集成,以提高定位准确性,但也有助于利用 ULF MRI 进行肿瘤成像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/143d/5839578/1f7927ddf67d/pone.0193890.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验