Suppr超能文献

连锁不平衡和测序质量模式对平衡选择印迹的影响。

The Impact of Patterns in Linkage Disequilibrium and Sequencing Quality on the Imprint of Balancing Selection.

机构信息

Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Genome Biol Evol. 2024 Feb 1;16(2). doi: 10.1093/gbe/evae009.

Abstract

Regions under balancing selection are characterized by dense polymorphisms and multiple persistent haplotypes, along with other sequence complexities. Successful identification of these patterns depends on both the statistical approach and the quality of sequencing. To address this challenge, at first, a new statistical method called LD-ABF was developed, employing efficient Bayesian techniques to effectively test for balancing selection. LD-ABF demonstrated the most robust detection of selection in a variety of simulation scenarios, compared against a range of existing tests/tools (Tajima's D, HKA, Dng, BetaScan, and BalLerMix). Furthermore, the impact of the quality of sequencing on detection of balancing selection was explored, as well, using: (i) SNP genotyping and exome data, (ii) targeted high-resolution HLA genotyping (IHIW), and (iii) whole-genome long-read sequencing data (Pangenome). In the analysis of SNP genotyping and exome data, we identified known targets and 38 new selection signatures in genes not previously linked to balancing selection. To further investigate the impact of sequencing quality on detection of balancing selection, a detailed investigation of the MHC was performed with high-resolution HLA typing data. Higher quality sequencing revealed the HLA-DQ genes consistently demonstrated strong selection signatures otherwise not observed from the sparser SNP array and exome data. The HLA-DQ selection signature was also replicated in the Pangenome samples using considerably less samples but, with high-quality long-read sequence data. The improved statistical method, coupled with higher quality sequencing, leads to more consistent identification of selection and enhanced localization of variants under selection, particularly in complex regions.

摘要

平衡选择下的区域以密集的多态性和多个持久的单倍型为特征,以及其他序列复杂性。成功识别这些模式取决于统计方法和测序质量。为了解决这个挑战,首先开发了一种新的统计方法,称为 LD-ABF,它采用有效的贝叶斯技术来有效地测试平衡选择。与一系列现有的测试工具(Tajima 的 D、HKA、Dng、BetaScan 和 BalLerMix)相比,LD-ABF 在各种模拟场景中表现出最稳健的选择检测。此外,还探讨了测序质量对平衡选择检测的影响,使用:(i)SNP 基因分型和外显子数据,(ii)靶向高分辨率 HLA 基因分型(IHIW)和(iii)全基因组长读测序数据(泛基因组)。在 SNP 基因分型和外显子数据分析中,我们在以前与平衡选择无关的基因中鉴定了已知的靶标和 38 个新的选择特征。为了进一步研究测序质量对平衡选择检测的影响,我们使用高分辨率 HLA 分型数据对 MHC 进行了详细的研究。更高质量的测序揭示了 HLA-DQ 基因始终表现出强烈的选择特征,否则从稀疏的 SNP 阵列和外显子数据中观察不到。使用质量更高的长读序列数据,在泛基因组样本中也复制了 HLA-DQ 选择特征。改进的统计方法和更高质量的测序,导致选择的识别更加一致,并增强了选择下变体的本地化,特别是在复杂区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4135/10853003/fb4566c662db/evae009f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验