Kurmyshev Evguenii V, Poterasu Marian, Guillen-Bonilla Jose T
Centro de Investigaciones en Optica, A.C., Loma del Bosque 115, Lomas del Campestre, 37150 León, Guanajuato, Mexico.
Appl Opt. 2007 Mar 20;46(9):1467-76. doi: 10.1364/ao.46.001467.
The efficiency of texture image classification is certainly influenced by image scale when a feature space or a classification method is not scale invariant. An alternative approach to the scale-invariant techniques is proposed that first estimates an effective image scale and then uses it to adjust texture features to get the best possible texture image recognition and classification. We use the correlation distance between pixels as a measure of the scale of texture images. We study the performance of classification of texture images in the coordinated cluster representation (CCR) versus an image scale and the size of the scanning window used for the coordinated cluster transform. Given the number of classes to be classified in, we find that an optimal (up to 100%) classification efficiency in the CCR feature space is obtained by changing an image scale and/or the size of the scanning window in the coordinated cluster transform.
当特征空间或分类方法不具有尺度不变性时,纹理图像分类的效率肯定会受到图像尺度的影响。本文提出了一种替代尺度不变技术的方法,该方法首先估计有效图像尺度,然后使用它来调整纹理特征,以获得最佳的纹理图像识别和分类效果。我们使用像素之间的相关距离作为纹理图像尺度的度量。我们研究了在协调聚类表示(CCR)中纹理图像分类性能与图像尺度以及用于协调聚类变换的扫描窗口大小之间的关系。在给定要分类的类别数量的情况下,我们发现通过改变图像尺度和/或协调聚类变换中扫描窗口的大小,可以在CCR特征空间中获得最佳(高达100%)的分类效率。