Neuhäuser Benjamin, Dynowski Marek, Mayer Maria, Ludewig Uwe
Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, D-72076 Tuebingen, Germany.
Plant Physiol. 2007 Apr;143(4):1651-9. doi: 10.1104/pp.106.094243. Epub 2007 Mar 2.
Ammonium transport across plant plasma membranes is facilitated by AMT/Rh-type ammonium transporters (AMTs), which also have homologs in most organisms. In the roots of the plant Arabidopsis (Arabidopsis thaliana), AMTs have been identified that function directly in the high-affinity NH4+ acquisition from soil. Here, we show that AtAMT1;2 has a distinct role, as it is located in the plasma membrane of the root endodermis. AtAMT1;2 functions as a comparatively low-affinity NH4+ transporter. Mutations at the highly conserved carboxyl terminus (C terminus) of AMTs, including one that mimics phosphorylation at a putative phosphorylation site, impair NH4+ transport activity. Coexpressing these mutants along with wild-type AtAMT1;2 substantially reduced the activity of the wild-type transporter. A molecular model of AtAMT1;2 provides a plausible explanation for the dominant inhibition, as the C terminus of one monomer directly contacts the neighboring subunit. It is suggested that part of the cytoplasmic C terminus of a single monomer can gate the AMT trimer. This regulatory mechanism for rapid and efficient inactivation of NH4+ transporters may apply to several AMT members to prevent excess influx of cytotoxic ammonium.
铵通过植物质膜的转运由AMT/Rh型铵转运蛋白(AMT)介导,这类蛋白在大多数生物体中也有同源物。在拟南芥的根中,已鉴定出直接参与从土壤中高亲和力获取NH4+的AMT。在此,我们表明AtAMT1;2具有独特作用,因为它位于根内皮层的质膜中。AtAMT1;2作为一种亲和力相对较低的NH4+转运蛋白发挥作用。AMT高度保守的羧基末端(C末端)发生突变,包括一个模拟假定磷酸化位点磷酸化的突变,会损害NH4+转运活性。将这些突变体与野生型AtAMT1;2共表达会显著降低野生型转运蛋白的活性。AtAMT1;2的分子模型为这种显性抑制提供了一个合理的解释,因为一个单体的C末端直接与相邻亚基接触。有研究表明,单个单体的部分胞质C末端可以控制AMT三聚体。这种使NH4+转运蛋白快速有效失活的调节机制可能适用于多个AMT成员以防止细胞毒性铵的过量内流。