Suppr超能文献

构巢曲霉中糖异生作用的转录调控

Transcriptional control of gluconeogenesis in Aspergillus nidulans.

作者信息

Hynes Michael J, Szewczyk Edyta, Murray Sandra L, Suzuki Yumi, Davis Meryl A, Sealy-Lewis Heather M

机构信息

Department of Genetics, University of Melbourne, Victoria, Australia.

出版信息

Genetics. 2007 May;176(1):139-50. doi: 10.1534/genetics.107.070904. Epub 2007 Mar 4.

Abstract

Aspergillus nidulans can utilize carbon sources that result in the production of TCA cycle intermediates, thereby requiring gluconeogenesis. We have cloned the acuG gene encoding fructose-1,6 bisphosphatase and found that expression of this gene is regulated by carbon catabolite repression as well as by induction by a TCA cycle intermediate similar to the induction of the previously studied acuF gene encoding phosphoenolpyruvate carboxykinase. The acuN356 mutation results in loss of growth on gluconeogenic carbon sources. Cloning of acuN has shown that it encodes enolase, an enzyme involved in both glycolysis and gluconeogenesis. The acuN356 mutation is a translocation with a breakpoint in the 5' untranslated region resulting in loss of expression in response to gluconeogenic but not glycolytic carbon sources. Mutations in the acuK and acuM genes affect growth on carbon sources requiring gluconeogenesis and result in loss of induction of the acuF, acuN, and acuG genes by sources of TCA cycle intermediates. Isolation and sequencing of these genes has shown that they encode proteins with similar but distinct Zn(2) Cys(6) DNA-binding domains, suggesting a direct role in transcriptional control of gluconeogenic genes. These genes are conserved in other filamentous ascomycetes, indicating their significance for the regulation of carbon source utilization.

摘要

构巢曲霉能够利用可导致三羧酸循环中间产物生成的碳源,因此需要糖异生作用。我们克隆了编码果糖-1,6-二磷酸酶的acuG基因,发现该基因的表达受碳分解代谢物阻遏调控,同时也受一种三羧酸循环中间产物的诱导,这种诱导作用类似于之前研究的编码磷酸烯醇式丙酮酸羧激酶的acuF基因所受的诱导。acuN356突变导致在糖异生碳源上无法生长。acuN的克隆表明它编码烯醇酶,这是一种参与糖酵解和糖异生作用的酶。acuN356突变是一种易位,断点位于5'非翻译区,导致在糖异生碳源而非糖酵解碳源存在时无法表达。acuK和acuM基因的突变影响在需要糖异生作用的碳源上的生长,并导致三羧酸循环中间产物来源对acuF、acuN和acuG基因的诱导作用丧失。这些基因的分离和测序表明它们编码具有相似但不同的Zn(2)Cys(6)DNA结合结构域的蛋白质,提示其在糖异生基因转录调控中起直接作用。这些基因在其他丝状子囊菌中保守,表明它们对碳源利用调控具有重要意义。

相似文献

1
Transcriptional control of gluconeogenesis in Aspergillus nidulans.
Genetics. 2007 May;176(1):139-50. doi: 10.1534/genetics.107.070904. Epub 2007 Mar 4.
2
Reprogramming of carbon metabolism by the transcriptional activators AcuK and AcuM in Aspergillus nidulans.
Mol Microbiol. 2012 Jun;84(5):942-64. doi: 10.1111/j.1365-2958.2012.08067.x. Epub 2012 May 2.
5
A cryptic role of a glycolytic-gluconeogenic enzyme (aldolase) in amino acid transporter turnover in Aspergillus nidulans.
Fungal Genet Biol. 2010 Mar;47(3):254-67. doi: 10.1016/j.fgb.2009.12.004. Epub 2009 Dec 21.

引用本文的文献

2
AcuM and AcuK: The global regulators controlling multiple cellular metabolisms in a dimorphic fungus Talaromyces marneffei.
PLoS Negl Trop Dis. 2024 Sep 4;18(9):e0012145. doi: 10.1371/journal.pntd.0012145. eCollection 2024 Sep.
3
The Transcription Factors AcuK and AcuM Influence Siderophore Biosynthesis of .
J Fungi (Basel). 2024 Apr 30;10(5):327. doi: 10.3390/jof10050327.
4
Role of in Control of Iron Acquisition and Gluconeogenesis in .
J Fungi (Basel). 2021 Sep 24;7(10):798. doi: 10.3390/jof7100798.
5
A PAS Protein Directs Metabolic Reprogramming during Cryptococcal Adaptation to Hypoxia.
mBio. 2021 Mar 16;12(2):e03602-20. doi: 10.1128/mBio.03602-20.
6
Expression of and Genes in Gluconeogenic Substrates and Various Iron Concentrations.
J Fungi (Basel). 2020 Jul 8;6(3):102. doi: 10.3390/jof6030102.
8
The gold-standard genome of NRRL 3 enables a detailed view of the diversity of sugar catabolism in fungi.
Stud Mycol. 2018 Sep;91:61-78. doi: 10.1016/j.simyco.2018.10.001. Epub 2018 Oct 7.

本文引用的文献

2
A fungal family of transcriptional regulators: the zinc cluster proteins.
Microbiol Mol Biol Rev. 2006 Sep;70(3):583-604. doi: 10.1128/MMBR.00015-06.
4
Niche-specific regulation of central metabolic pathways in a fungal pathogen.
Cell Microbiol. 2006 Jun;8(6):961-71. doi: 10.1111/j.1462-5822.2005.00676.x.
9
Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae.
Curr Genet. 2003 Jun;43(3):139-60. doi: 10.1007/s00294-003-0381-8. Epub 2003 Apr 25.
10
The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae.
FEMS Microbiol Rev. 2003 Apr;27(1):35-64. doi: 10.1016/S0168-6445(03)00017-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验