Suppr超能文献

转录调控在控制酿酒酵母中心碳代谢通量中的作用。一项恒化器培养研究。

Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study.

作者信息

Daran-Lapujade Pascale, Jansen Mickel L A, Daran Jean-Marc, van Gulik Walter, de Winde Johannes H, Pronk Jack T

机构信息

Kluyver Laboratory of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.

出版信息

J Biol Chem. 2004 Mar 5;279(10):9125-38. doi: 10.1074/jbc.M309578200. Epub 2003 Nov 20.

Abstract

In contrast to batch cultivation, chemostat cultivation allows the identification of carbon source responses without interference by carbon-catabolite repression, accumulation of toxic products, and differences in specific growth rate. This study focuses on the yeast Saccharomyces cerevisiae, grown in aerobic, carbon-limited chemostat cultures. Genome-wide transcript levels and in vivo fluxes were compared for growth on two sugars, glucose and maltose, and for two C2-compounds, ethanol and acetate. In contrast to previous reports on batch cultures, few genes (180 genes) responded to changes of the carbon source by a changed transcript level. Very few transcript levels were changed when glucose as the growth-limiting nutrient was compared with maltose (33 transcripts), or when acetate was compared with ethanol (16 transcripts). Although metabolic flux analysis using a stoichiometric model revealed major changes in the central carbon metabolism, only 117 genes exhibited a significantly different transcript level when sugars and C2-compounds were provided as the growth-limiting nutrient. Despite the extensive knowledge on carbon source regulation in yeast, many of the carbon source-responsive genes encoded proteins with unknown or incompletely characterized biological functions. In silico promoter analysis of carbon source-responsive genes confirmed the involvement of several known transcriptional regulators and suggested the involvement of additional regulators. Transcripts involved in the glyoxylate cycle and gluconeogenesis showed a good correlation with in vivo fluxes. This correlation was, however, not observed for other important pathways, including the pentose-phosphate pathway, tricarboxylic acid cycle, and, in particular, glycolysis. These results indicate that in vivo fluxes in the central carbon metabolism of S. cerevisiae grown in steadystate, carbon-limited chemostat cultures are controlled to a large extent via post-transcriptional mechanisms.

摘要

与分批培养不同,恒化器培养能够在不受碳分解代谢物阻遏、有毒产物积累和比生长速率差异干扰的情况下,鉴定碳源反应。本研究聚焦于在需氧、碳限制的恒化器培养中生长的酿酒酵母。比较了在两种糖类(葡萄糖和麦芽糖)以及两种C2化合物(乙醇和乙酸盐)上生长时的全基因组转录水平和体内通量。与之前关于分批培养的报道不同,很少有基因(180个基因)通过转录水平的变化对碳源变化作出反应。当将葡萄糖作为生长限制营养物与麦芽糖进行比较时(33个转录本),或者当将乙酸盐与乙醇进行比较时(16个转录本),转录水平的变化非常少。尽管使用化学计量模型进行的代谢通量分析揭示了中心碳代谢的主要变化,但当糖类和C2化合物作为生长限制营养物提供时,只有117个基因表现出显著不同的转录水平。尽管对酵母中碳源调控已有广泛了解,但许多碳源响应基因编码的蛋白质具有未知或特征不完全明确的生物学功能。对碳源响应基因的计算机启动子分析证实了几种已知转录调节因子的参与,并暗示了其他调节因子的参与。参与乙醛酸循环和糖异生的转录本与体内通量显示出良好的相关性。然而,对于其他重要途径,包括磷酸戊糖途径、三羧酸循环,特别是糖酵解,并未观察到这种相关性。这些结果表明,在稳态、碳限制的恒化器培养中生长的酿酒酵母中心碳代谢的体内通量在很大程度上是通过转录后机制控制的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验