Ecosystem Physiology, Institute of Forest Sciences, Faculty of Environment and Natural Resources, Albert-Ludwigs-University Freiburg, Freiburg, Germany.
PLoS One. 2018 Sep 25;13(9):e0204398. doi: 10.1371/journal.pone.0204398. eCollection 2018.
Our understanding of biogenic volatile organic compound (BVOC) emissions improved substantially during the last years. Nevertheless, there are still large uncertainties of processes controlling plant carbon investment into BVOCs, of some biosynthetic pathways and their linkage to CO2 decarboxylation at central metabolic branching points. To shed more light on carbon partitioning during BVOC biosynthesis, we used an innovative approach combining δ13CO2 laser spectroscopy, high-sensitivity proton-transfer-reaction time-of-flight mass spectrometry and a multiple branch enclosure system in combination with position-specific 13C-metabolite labelling. Feeding experiments with position-specific 13C-labelled pyruvate, a central metabolite of BVOC synthesis, enabled online detection of carbon partitioning into 13C-BVOCs and respiratory 13CO2. Measurements of trace gas emissions of the Mediterranean shrub Halimium halimifolium revealed a broad range of emitted BVOCs. In general, [2-13C]-PYR was rapidly incorporated into emitted acetic acid, methyl acetate, toluene, cresol, trimethylbenzene, ethylphenol, monoterpenes and sesquiterpenes, indicating de novo BVOC biosynthesis of these compounds. In contrast, [1-13C]-pyruvate labelling substantially increased 13CO2 emissions in the light indicating C1-decarboxylation. Similar labelling patterns of methyl acetate and acetic acid suggested tightly connected biosynthetic pathways and, furthermore, there were hints of possible biosynthesis of benzenoids via the MEP-pathway. Overall, substantial CO2 emission from metabolic branching points during de novo BVOC biosynthesis indicated that decarboxylation of [1-13C]-pyruvate, as a non-mitochondrial source of CO2, seems to contribute considerably to daytime CO2 release from leaves. Our approach, combining synchronised BVOC and CO2 measurements in combination with position-specific labelling opens the door for real-time analysis tracing metabolic pathways and carbon turnover under different environmental conditions, which may enhance our understanding of regulatory mechanisms in plant carbon metabolism and BVOC biosynthesis.
近年来,我们对生物源挥发性有机化合物(BVOC)排放的理解有了很大的提高。然而,控制植物将碳投入 BVOC 的过程、一些生物合成途径及其与中央代谢分支点 CO2 脱羧的联系仍然存在很大的不确定性。为了更深入地了解 BVOC 生物合成过程中的碳分配,我们采用了一种创新的方法,结合δ13CO2 激光光谱学、高灵敏度质子转移反应飞行时间质谱和多分支封闭系统以及位置特异性 13C 代谢物标记,对碳分配进行了研究。利用位置特异性 13C 标记的丙酮酸(BVOC 合成的中心代谢物)进行的饲喂实验,使我们能够在线检测碳分配到 13C-BVOC 和呼吸 13CO2 中。对地中海灌木 Halimium halimifolium 痕量气体排放的测量显示,它排放的 BVOC 种类繁多。一般来说,[2-13C]-PYR 迅速被掺入到已发出的乙酸、乙酸甲酯、甲苯、甲酚、均三甲苯、乙基苯酚、单萜和倍半萜中,表明这些化合物是从头合成的 BVOC。相反,在光下,[1-13C]-丙酮酸标记大大增加了 13CO2 的排放,表明 C1 脱羧。乙酸甲酯和乙酸的相似标记模式表明存在紧密相连的生物合成途径,此外,还可能存在通过 MEP 途径合成苯类化合物的迹象。总的来说,从头合成 BVOC 过程中代谢分支点的大量 CO2 排放表明,作为 CO2 的非线粒体来源,[1-13C]-丙酮酸的脱羧似乎对叶片白天 CO2 的释放有相当大的贡献。我们的方法结合了同步的 BVOC 和 CO2 测量以及位置特异性标记,为实时分析追踪不同环境条件下的代谢途径和碳周转打开了大门,这可能有助于我们理解植物碳代谢和 BVOC 生物合成的调节机制。